Legionella and Solar Water Heaters

Gerard van Amerongen
vAConsult (The Netherlands)
TC 312 - Thermal Solar Systems and Components -
Contents

• Introduction
 – Involvement of TC312 and current situation

• Legionella and solar hot water systems
 – Results from literature study

• Mathematical study
 – How does Legionella dynamically behaves in solar systems

• Code of practice
 – How to control the risk of Legionella hazard
Introduction

• CEN TC 164 WG2: Technical report 16355
 “Recommendations for prevention of Legionella growth in installations inside buildings conveying water for human consumption”
 – Recommendations on hot water installations
 – Not explicit for solar hot water systems
 • Need for explicit rules for solar hot water systems

• TC 312 drafted a Code of practice
 – Focus on solar hot water systems
 – Building on the CEN TR 16355
 – TC 312 approved for a work item to make it a CEN TR
Introduction

• Project started in 2011/2012
 – Project team:
 • John Lee (UK) Legionella ecology and control
 • Jean-Marc Sutter (CH) Solar hot water systems & standardization
 • G. van Amerongen (NL) Solar hot water systems & liaison TC164
 • Reporting and discussions within TC312

• Work done:
 – Background report (Legionella and solar water heaters)
 • Literature study
 • Mathematical study
 – Drafting of Code of Practice (Minimizing the risk of Legionella ...)

TC164/WG2 2013 Bonn
Legionella and solar water heaters

- Origin outbreaks Legionella < 10% from hot or cold water installations
 - or 20% of known cases
- Can originates from all parts of such installations
 - Piping, valves, devices, ...
 - also from solar thermal devices
 - No statistical data available on solar share in this
 - probably due to small penetration grade
- Legionella is to be taken serious in hot water installations
Reports on incidences in solar systems

- Three known outbreaks:
 - Brazil: cause unspecified
 - Antiqua: indirect relation
 - Turkey: mismanagement

- Reported incidences:
 - Athens: Legionella in 10% SHW and 69% oil fired systems
 - Germany: 4.2% of solar and 13% of others
 - Denmark: 0% of solar and 21% of others

- Legionella also in solar, but not more often than others
Legionella and solar thermal
- Dynamic process of stability, growth and dying -
Mathematical simulations

• Simulation by model calculation of development of Legionella

• Assumptions on the solar hot water system:
 – Typical solar system layouts
 – Different collector orientations and tilts, climate zones and heat demands
 – Hourly calculations for two successive years

• Assumptions on the Legionella development
 – 98% of Legionellae is on the tank surface
 – A defined maximum allowed concentration in the water
 – Assumed relation temperature and concentration development
Building categories and risk levels

• For interpretation of mathematical study
 – Categories based on SIA 3851/1 (CH)
 – Low risk (concentration < 5x10^5 cfu/l)
 • Housing units, restaurants, stores, ...
 – Medium risk (concentration < 5x10^3 cfu/l)
 • Residential buildings, schools, sports, ...
 – High risk (out of the scope of the report)
 • Hospitals, housing for elderly, ...
 • Out of scope: special Legionella management required
Results
- examples of results -

Stockholm, Sweden

Evora, Portugal

Introduction Literature study Mathematical study Code of practice TC164/WG2 2013 Bonn
Results / conclusions

- Legionellae growths and dies in a solar thermal system
 - Concentrations of Legionella depend on many factors:
 - systems design, climatic region and the operation of the system
 - Lessons can be learned to maintain a low risks
 - On system design in combination with type of application
 - and the TC164 wg2 TR16355
 - The lessons learned are used to draft the Code of Practice
Lessons learned

- Vulnerable situations
 - Solar collection without heat withdrawal (winter months!)
 - Only workday or weekend use
 - Over dimensioned tank volume related to design load
 - Sub-optimal collector orientation
 - Especially vertical mounted collector southern Europe
 - High ration V_{sto}/A_{col}

- Solar only systems:
 - More vulnerable due to lack of auxiliary heater
 - Less vulnerable due to higher throughput of tank
Applicable materials for containers of potable water
– E.g.: stainless steel, copper, enameled steel

Design of these containers
– E.g.: hygienic conditions

Controllers
– E.g.: tank temperature < 80 °C

Documentation
– E.g.: safeguards against improper use
Code of practice
- Design recommendations -

- 4 system layouts of solar and auxiliary
- Each a set of recommendations
Installation layout
- storage / storage -

- Risk evaluation:
 - Potential growth solar tank
 - Potential growth auxiliary tank

- Recommendations:
 - Auxiliary: > 55 °C whole day or >60 °C one hour (TR16355)
 - Solar device options (‘or’):
 - Design rules (dimensioning of components)
 - Aimed at V_{sto} / A_{col}
 - Thermal disinfection: 60°C/20m, 65°C/10m, 70°C/5m (TR16355)
 - Medium/low risk: weekly
 - High risk: daily
Installation layout
- storage / instantaneous -

- **Risk evaluation:**
 - Low risk of growth solar tank
 - Potential growth auxiliary tank

- **Recommendations:**
 - Auxiliary: > 55 °C whole day or >60 °C one hour (TR16355)
 - None for solar device
Installation layout
- instantaneous / instantaneous

• Risk evaluation:
 – Low risk of growth solar tank
 – Low risk of growth auxiliary tank

• Recommendations:
 – None
Installation layout
- instantaneous/ storage

• Risk evaluation:
 – Potential risk of growth solar tank
 – No disinfection in auxiliary tank

• Recommendations:
 – Solar device options (low risk):
 • Design rules (dimensioning of components), or
 – Aimed at V_{sto} / A_{col}
 • Thermal disinfection: 60°C/20m, 65°C/10m, 70°C/5m (TR16355)
 – Medium/low risk: weekly High risk: daily
 • Solar device options (medium and high risk):
 – Above and Legionella safe design + sampling + maintenance manual
Conclusions

- Code of Practice is a valuable addition to the TR16355
 - Solar thermal systems are now more explicit
 - Guide to maintain the Legionella risk within acceptable ranges
 - Design and operation
- Legionella shows a dynamic development within a solar system
 - Stable population and growth and dying
 - Typical systems and operation show an intrinsic safeguard against Legionella hazards
 - However, bad design and operation conditions may prove harmful
- No indications reported of ‘above average’ risks related to solar thermal
recommendations

- Upgrade Code of Practice to a more formal status
 - CEN technical report (CEN approved)
 - Preferably with support from TC164 WG2
 - Common workgroup?
- More field studies
 - Hot water installations with renewable energy sources
 - Further research to determine more accurately the frequency of thermal disinfection (at 60 °C)
- Further mathematical studies
 - More system types and thermal stratification in tank