Consultancy for renewable energy in the built environment

Legionella and Solar Water Heaters

Gerard van Amerongen vAConsult (The Netherlands) TC 312 - Thermal Solar Systems and Components -

Contents

Introduction

- Involvement of TC312 and current situation
- Legionella and solar hot water systems
 - Results from literature study
- Mathematical study
 - How does Legionella dynamically behaves in solar systems
- Code of practice
 - How to control the risk of Legionella hazard

Introduction

• CEN TC 164 WG2: Technical report 16355

"Recommendations for prevention of Legionella growth in installations inside buildings conveying water for human consumption"

- Recommendations on hot water installations
- Not explicit for solar hot water systems
 - Need for explicit rules for solar hot water systems
- TC 312 drafted a Code of practice

"Code of practice – The CEN/TR 16355 technical report of CEN/TC 164/WG 2 on Legionella applied to solar hot water systems"

- Focus on solar hot water systems
- Building on the CEN TR 16355
- TC 312 approved for a work item to make it a CEN TR

Introduction

Project started in 2011/2012

- Project team:
 - John Lee (UK) Legionella ecology and control
 - Jean-Marc Sutter (CH) Solar hot water systems & standardization
 - G. van Amerongen (NL) Solar hot water systems & liaison TC164
 - Reporting and discussions within TC312
- Work done:
 - Background report (Legionella and solar water heaters)
 - Literature study
 - Mathematical study
 - Drafting of Code of Practice (Minimizing the risk of Legionella ...)

Nuclear States

Legionella and solar water heaters

- Origin outbreaks Legionella
 < 10% from hot or cold water installations
 - or 20% of known cases

- Can originates from all parts of such installations
 - Piping, valves, devices, ...
 - also from solar thermal devices
 - No statistical data available on solar share in this
 - probably due to small penetration grade
- Legionella is to be taken serious in hot water installations

A MARK

Reports on incidences in solar systems

- Three known outbreaks:
 - Brazil: cause unspecified
 - Antiqua: indirect relation
 - Turkey: mismanagement
- Reported incidences:
 - Athens: Legionella in 10% SHW and 69% oil fired systems
 - Germany: 4,2% of solar and 13% of others
 - Denmark: 0% of solar and 21% of others
- Legionella also in solar, but not more often than others

Introduction

Literature study

Legionella and solar thermal

- Dynamic process of stability, growth and dying -

Mathematical study

Code of practice

TC164/WG2 2013 Bonn

A MARK

Mathematical simulations

- Simulation by model calculation of development of Legionella
- Assumptions on the solar hot water system:
 - Typical solar system layouts
 - Different collector orientations and tilts, climate zones and heat demands
 - Hourly calculations for two successive years
- Assumptions on the Legionella development
 - 98% of Legionellae is on the tank surface
 - A defined maximum allowed concentration in the water
 - Assumed relation temperature and concentration development

Building categories and risk levels

- For interpretation of mathematical study
 - Categories based on SIA 3851/1 (CH)
 - Low risk (concentration < 5x10⁵ cfu/l)
 - Housing units, restaurants, stores, ...
 - Medium risk (concentration < 5x10³ cfu/l)
 - Residential buildings, schools, sports, ...
 - High risk (out of the scope of the report)
 - Hospitals, housing for elderly, ...
 - Out of scope: special Legionella management required

Introduction

Results - examples of results -

Mathematical study

V/A=25 V/A=40 V/A=55

Literature study

Results / conclusions

- Legionellae growths and dies in a solar thermal system
 - Concentrations of Legionella depend on many factors:
 - systems design, climatic region and the operation of the system
- Lessons can be learned to maintain a low risks
 - On system design in combination with type of application
 - and the TC164 wg2 TR16355
- The lessons learned are used to draft the Code of Practice

Lessons learned

- Vulnerable situations
 - Solar collection without heat withdrawal (winter months!)
 - Only workday or weekend use
 - Over dimensioned tank volume related to design load
 - Sub-optimal collector orientation
 - Especially vertical mounted collector southern Europe
 - High ration V_{sto} / A_{col}
- Solar only systems:
 - More vulnerable due to lack of auxiliary heater
 - Less vulnerable due to higher throughput of tank

Code of practice

- Design considerations -

- Applicable materials for containers of potable water
 - E.g.: stainless steel, copper, enameled steel
- Design of these containers
 - E.g.: hygienic conditions
- Controllers
 - E.g.: tank temperature < 80 °C</p>
- Documentation
 - E.g.: safeguards against improper use

Code of practice

- Design recommendations -
- 4 system layouts of solar and auxiliary
- Each a set of recommendations

Installation layout

- storage / storage -

- Risk evaluation:
 - Potential growth solar tank
 - Potential growth auxiliary tank
- Recommendations:

- Auxiliary: > 55 °C whole day or >60 °C one hour (TR16355)
- Solar device options ('or'):
 - Design rules (dimensioning of components)
 - Aimed at V $_{\rm sto}$ / $\rm A_{\rm col}$
 - Thermal disinfection: 60°C/20m, 65°C/10m, 70°C/5m(TR16355)
 - Medium/low risk: weekly High risk: daily

Installation layout

- storage / instantaneous -
- Risk evaluation:
 - Low risk of growth solar tank
 - Potential growth auxiliary tank
- Recommendations:

- Auxiliary: > 55 °C whole day or >60 °C one hour (TR16355)
- None for solar device

Mul.

Installation layout

- instantaneous / instantaneous
- Risk evaluation:
 - Low risk of growth solar tank
 - Low risk of growth auxiliary tank
- Recommendations:
 - None

7

Installation layout

- instantaneous/ storage

- Risk evaluation:
 - Potential risk of growth solar tank
 - No disinfection in auxiliary tank
- Recommendations:
 - Solar device options (low risk):
 - Design rules (dimensioning of components), or
 - Aimed at $\rm V_{sto}$ / $\rm A_{col}$
 - Thermal disinfection: 60°C/20m, 65°C/10m, 70°C/5m(TR16355)
 - Medium/low risk: weekly High risk: daily
 - Solar device options (medium and high risk):
 - Above and Legionella safe design + sampling + maintenance manual

Conclusions

• Code of Practice is a valuable addition to the TR16355

- Solar thermal systems are now more explicit
- Guide to maintain the Legionella risk within acceptable ranges
 - Design and operation
- Legionella shows a dynamic development within a solar system
 - Stable population and growth and dying
 - Typical systems and operation show an intrinsic safeguard against Legionella hazards
 - However, bad design and operation conditions may prove harmful
- No indications reported of 'above average' risks related to solar thermal

recommendations

- Upgrade Code of Practice to a more formal status
 - CEN technical report (CEN approved)
 - Preferably with support from TC164 WG2
 - Common workgroup?
 - More field studies
 - Hot water installations with renewable energy sources
 - Further research to determine more accurately the frequency of thermal disinfection (at 60 °C)
 - Further mathematical studies
 - More system types and thermal stratification in tank