
Annex xxx 
General guidelines for the assessment of uncertainty in solar collector 

efficiency testing 

1. Introduction 

Testing laboratories, in the framework of their accreditation or of application of product 
certification schemes, are often invited to provide a statement of uncertainty in test results. 
Even though the assessment of uncertainty concerns every quantitative result, the most 
interesting quantity for the potential users of solar thermal collectors is the one of the energy 
efficiency, as this quantity essentially influences the cost-benefit relation of the required 
investment. 

Moreover, the quantification of the various error sources and the analysis of the uncertainty 
budget are considered notably significant for the testing laboratories, to the degree that the 
uncertainty budget analysis can help towards the optimization of the testing procedure, the 
effective planning of testing equipment and the improvement of the testing results quality. 

The aim of this annex is to provide a general guidance for the assessment of uncertainty in the 
result of solar collector testing performed according to the present standard. The need for a 
well defined methodology for the assessment of uncertainty in collector efficiency testing 
results arises due to the peculiarities of the related calculations. More specifically, the final 
result is not derived by a single direct measurement, but it is the outcome of the combination 
of a large number of primary measurements supported by intermediate calculations, on a 
procedure consisting of multiple stages. 

It is important to note that the proposed methodology is one amongst the possible approaches 
for the assessment of uncertainty; other approaches can also be implemented, given that they 
are compatible with the up-to-date metrological concepts for the estimation of metrological 
uncertainty (BIPM et al., 2008). It lies upon each Laboratory to choose and to implement a 
scientifically valid approach for the determination of uncertainties, according to the 
recommendations of the accreditation bodies, where appropriate. For a more detailed review 
of the different aspects of determination of uncertainties in solar collector testing see also 
(Mathioulakis et al., 1999; Sabatelli et al., 2002; Müller-Schöll and Frei, 2000). 

 

2. The measurement model 

The basic target of solar collector efficiency testing is the determination of the coefficients of 
the characteristic equation of the solar collector, through the measurement of the efficiency in 
certain conditions. More specifically, it is assumed that the energy performance of the 
collector can be described by a M-parameter single node, steady state or quasi-dynamic model 
(measurement model): 
 

MM xcxcxcy +++= ...2211          (1) 
 

where: 

y is a dependent variable, typically a quantity related to the collector efficiency, the values 
of which are determined experimentally through testing. 

x1, x2,…,xM are independent variables, the values of which are also determined 
experimentally through testing. 

c1,c2,…,cM are characteristic constants of the collector.  



The aim of the test is the determination of the values of the characteristic coefficients 
c1,c2,…,cM  in a manner according to which the experimental values of y and x1, x2,…,xM could 
fit as good as possible with equation 1 (best fit). 

In the case of the steady state model: M=3, y=n, c1= η0, c2=U1, c3=U2, x1=1, x2=(Tm-Ta)/G 
and x3=(Tm -Ta)2/G. 

In the case of the quasi-dynamic model, in its simplest form, the respective parameters are: 
M=6, y= AQ /& , c1=η0,b,en, c2= η0,b,enb0, c3= η0,b,enKθd, c4=c1, c5=c2, c6=c5, x1=Gb, 
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quantities which are involved in the other forms of the quasi-dynamic model, namely when 
the influence of the wind velocity or of long-wave thermal radiation is considered. 

During the experimental phase, the output energy of the collector and the involved climatic 
quantities (incident solar radiation, ambient temperature, wind velocity, etc.), are measured in 
J steady-state or quasi-dynamic state points, depending on the model used. From these 
primary measurements the values of parameters y, x1, x2,…,xM are derived for each point of 
observation j, j=1…J. Generally, the experimental procedure of the testing leads to a 
formation of a group of J observations which comprise, for each one of the J testing points, 
the values of y, x1, x2,…,xM. 

 

3. Uncertainties associated with experimental data 

For the determination of uncertainties, it is essential to calculate the respective combined 
standard uncertainties 

jyu , 
1,jxu , …, 

Mjxu
,

 of the dependent variable, as well as of the 
independent ones, in each observation point. It should be noted that in practice these 
uncertainties are almost never constant and same for all points, but each testing point has its 
own standard deviation. 

The uncertainty in the quantities correlated through equation 1 is not directly known, but it 
can be calculated according to the metrological characteristics of the measurement devices. 
For the calculation of the standard deviation (squared standard uncertainty) in each point j, the 
following general rules can be applied (BIPM et al., 2008). 

I. Standard uncertainties in experimental data are determined by taking into account Type Α 
and Type Β uncertainties. According to the recommendation of ISO GUM (BIPM et al., 
2008), the former are the uncertainties determined by statistical means while the latter are 
determined by other means. 

II. The uncertainty us associated with a measurement s of a quantity S is the result of a 
combination of the Type Β uncertainty uB,s, which is a characteristic feature of the 
calibration setup, and of the Type A uncertainty uA,s, which represents fluctuation during 
sampling of data. If there is more than one independent source of uncertainty (Type B or 
Type A) ui, i=1,…,I, the final uncertainty is calculated according to the general law of 
uncertainties combination: 
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III. Type Β uncertainty uB,s derives from a combination of uncertainties over the whole 



measurement chain, taking into account all available information, such as sensor 
uncertainty, data logger uncertainty, uncertainty resulting from the possible differences 
between the measured values perceived by the measuring device. Relevant information 
should be obtained from calibration certificates or other technical data related to the 
devices used. 

IV. By nature, Type A uncertainties depend on the specific conditions of measurement and 
they account for the fluctuations in the measured quantities during the measurement. Type 
A uncertainty uA,s derives from the statistical analysis of experimental data. In some cases 
(for example in the case of the steady-state model), the best estimate s of S is the arithmetic 
means of the N repeated observations sn (n=1...N) and its Type A uncertainty is the 
standard deviations of the mean: 
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In cases where no arithmetic mean of the repetitive measurements is used, as in the case of 
the quasi-dynamic model, uncertainty uA,s is equal to zero. 

V.  The term combined standard uncertainty means the standard uncertainty in a result when 
that result is obtained from the values of a number of other quantities. In most cases a 
measured Y is determined indirectly from P other directly measured quantities X1, X2,...,XP 
through a functional relationship Y=f(X1, X2, ...XP). The standard uncertainty in the 
estimate y of Y is given by the law of error propagation, as a function of the estimates x1, 
x2, ...,xP of X1, X2,...,XP, taking also into account the respective standard uncertainties ux1, 
ux2, …uxp: 
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In cases the estimates x1, x2, ...,xP can be considered as independent one to the other, the 
relation (4) is simplified accordingly: 
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The uncertainty in the quantities correlated through equation 1 is not directly known, but it 
can be calculated according to the metrological characteristics of the measurement devices. 
For this indirect calculation, the law of error propagation is implemented (BIPM et al., 2008). 

An example of such indirect determination in the case of solar collector efficiency testing is 
the determination of instantaneous efficiency η, which derives from the values of global solar 



irradiance in the collector level G, fluid mass flowrate m, temperate difference ∆T, collector 
area Α and specific heat capacity Cp: 
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Thus, in this case the standard uncertainty uη in each value η of instantaneous efficiency is 
calculated by the combination of standard uncertainties in the values of the primary measured 
quantities, taking into account their relation to the derived quantity η. By assuming that the 
quantities entering the second part of relation 6 are not correlated, and the value of Cp is 
known with negligible uncertainty, the standard uncertainty in the values of n can be 
estimated by the relation:  

 

22222

22222

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

A
u

G
u

TT
u

TT
u

m
un

u
A
Gu

G
Gu

T
nu

T
nu

m
nu

AG

ine

T

ine

Tm

AGT
in

T
e

mn

ine

ine ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

   (7) 

 

The information related to the uncertainty characterizing the primary measured quantities has 
to be derived by information coming from the calibration of sensors used in practice. 

 

4. Fitting and uncertainties in efficiency testing results 

Following the completion of the test, the elaboration of the primary experimental data leads to 
J testing points, namely J sets of values of the dependent variable y and the M independent 
variables x1, x2,…,xM, which can be written in matrix form: 
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A least square fitting of the model equation is performed, in order to determine the values of 
coefficients c1, c2,…,cM for which the model of equation 1 represents the series of J 
observations with the greatest accuracy. However, very often, in order to be in compliance 
with the requirements of accreditation and certification, not only the coefficients, but also 
their variances and covariances are required for uncertainty analysis of results produced by 
any further use of the fitted model.  



The deviations of the model from the real data can be attributed to experimental errors but 
also to model weaknesses. In any case, the basic working hypothesis considers the model to 
be suitable for the description of the related to experimental observations phenomena.  

The basic methodology is almost always the same (Press et al., 1996): a figure-of-merit 
function is selected, to give an indication of the difference between the real data and the 
model. After this, the model parameters are selected so that the value of this function is 
minimized.   

The most commonly used method for the fitting is this of the ordinary least squares (OLS), 
being also easy to implement. Ordinary least squares technique is based on a set of hypotheses 
that are not always fulfilled, mainly referring to the absence of errors on the values of the 
independent variables and, often, to the homoscedasticity of the errors associated with the 
values of dependent variable. However, in practice, measured data are always subject to some 
uncertainty. Thus, through the procedure of best fit determination, as in the case treated here, 
a method is required for fitting the linear model to data with uncertainties in both dependent 
and independent coordinates. 

In the case where only the values of the dependent variables are precisely known, the figure-
of-merit function to be minimized presents the following form: 
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Where 2
Yu  is the covariance (or uncertainty) matrix associated with the vector Y. Assuming 

that the covariance matrix 2
Yu  is diagonal, that is to say that the measurements Y1,…,YJ are 

independent one to the other, the relation 9 is written: 
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For the case the uncertainties characterizing the values xj,m of the independent variables can 
not be considered as negligible, the figure-of-merit function to be minimized becomes (Lira, 
2000): 
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where 2
Xu  is the covariance (or uncertainty) matrix associated with the matrix Χ. 

The derivation of equation 11 for the finding of its minimum value is quite complicated due to 
the non linear character it presents. For the needs of usual metrological applications, various 
approximate methods have been proposed, each one presenting different degree of difficulty. 
Within the context of the present investigation, the so-called “effective variance” approach is 
adopted, the implementation of which is justified in cases where the input uncertainty 
matrices can be considered as diagonal, as it is valid for the case concerning this work. 



According to this approach, the overall variance in each observation point results through the 
“transferring” of the uncertainties in X to those in Y and treating X as exactly known quantities 
(Lira, I.; Cecchi, 1991; Press et al., 1996):  
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In this case, the normal equation of the least square problem can be written: 

 

( ) LKC KK TT ⋅=⋅⋅            (13) 

 

where C is a vector whose elements are the fitted coefficients, K is a matrix whose JxM 
components kj,m are constructed from M basic functions evaluated at the J experimental values 
of x1, …,xM weighted by the uncertainty uj , and L is a vector of length J whose components lj 
are constructed from values of yj to be fitted, weighted by the uncertainty uj: 
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Given that for the calculation of variances 2
ju  the knowledge of coefficients c1, c2,…,cM is 

needed, a possible solution is to use the values of coefficients calculated by ordinary least 
squares fitting as the initial values. These initial values can be used in equation 12 for the 
calculation of 2

ju , J=1…J and the formation of matrix K and of vector L. 

The solution of equation 13 gives the new values of coefficients c1, c2,…,cM, which however 
are not expected to differ noticeably from those calculated by standard least squares fitting 
and used as initial values for the calculation of 2

ju : 
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Moreover, Z=INV(KT•K) is the uncertainty matrix whose diagonal elements zk,k are the 
squared uncertainties (variances) and the off-diagonal elements zk,l= zl,k, k≠l are the covariance 
between fitted coefficients: 
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Cov(ck,cl)= zk,l= zl,k, k=1,…,M and l=1,…,M and k≠l      (18) 

 

It should be noted that the knowledge of covariance between the fitted coefficients is 
necessary if one wishes to calculate, in a next stage, the uncertainty ux in the predicted values 
of x using equations 1 and the law of error propagation (equation 4). 

Equation 16 can be solved by a standard numerical method, for example, by Gauss-Jordan 
elimination. It is also possible to use matrix manipulation functions of commonly used 
spreadsheet software. 

What most concerns future users of the collectors is the uncertainty characterizing the values 
of the collector efficiency, when this is calculated for given values of operation conditions 
(irradiance, angle of incidence, ambient temperature, inlet water temperature etc). The 
calculation of the expected efficiency y/ can be easily done by entering in equation 1 the fitted 
coefficients [ ]TMccC ...1=  and the operation conditions [ ]/// ...

1 M
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The uncertainty in the predicted values of y can be calculated by applying the law of error 
propagation (equation 4), taking into account both variances and covariances of the fitted 
coefficient and considering the operation conditions /X  to be known without uncertainties: 
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or in matrix notation: 
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