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Assessment of uncertainty in efficiency testing of solar thermal collectors 

and solar thermal systems 

 
1. Introduction 
 
Testing laboratories, in the framework of their accreditation or of application of product 
certification schemes, are often invited to provide a statement of uncertainty in test results. 
Even though the assessment of uncertainty concerns every quantitative result, the most 
interesting quantity for the potential users of solar thermal energy installations is the one of 
the energy efficiency, as this quantity essentially influences the cost-benefit relation of the 
required investment. 
Moreover, the quantification of the various error sources and the analysis of the uncertainty 
budget are considered notably significant for the testing laboratories, to the degree that the 
uncertainty budget analysis can help towards the optimization of the testing procedure, the 
effective planning of testing equipment and the improvement of the testing results quality, on 
a wider context. 
The aim of this analysis is to provide a general guidance for the assessment of uncertainty 
characterizing the results of solar thermal collectors and systems testing, performed according 
to the standards EN 12975-2 and EN 12976-2 respectively. The need for a well defined 
methodology for the assessment of uncertainty in efficiency testing results arises due to the 
peculiarities of the related calculations. More specifically, the final result is not derived by a 
single direct measurement, but it is the outcome of the combination of a large number of 
primary measurements supported by intermediate calculations, on a procedure consisting of 
multiple stages. 
It is important to note that the proposed methodology is one amongst the possible approaches 
for the assessment of uncertainty; other approaches can also be implemented, given that they 
are compatible with the up-to-date metrological concepts for the estimation of metrological 
uncertainty (BIPM et al., 2008a). It lies upon each Laboratory to choose and to implement a 
scientifically valid approach for the determination of uncertainties, according to the 
recommendations of the accreditation bodies, where appropriate.  
It should also be noted that the uncertainty associated with a quantitative result is not a 
property of the measured quantity itself, but it characterizes the quality of information that the 
metrologist or the laboratory have achieved to acquire for the specific quantity. On this point 
of view, the uncertainty value strongly depends on the metrological performance of the 
experimental equipment which is used, as well as on the procedures implemented for the 
specific data collection and elaboration.  
This report is organized as follows. In section 2 specific aspects related to the assessment of 
uncertainties in general, as well as to the calculation of uncertainties in the case of solar 
thermal products performance testing in particular, are examined. Section 3 focuses on the 
case of solar thermal collectors testing, and it includes, apart from the description of the 
proposed methodology, an example of implementation on real testing data. Section 4 concerns 
the solar thermal systems testing, making reference to both methods which are accepted 
within the framework of European accreditation. 



2. General rules for the calculation of uncertainties in efficiency testing 
 
2.1. Testing methods of solar thermal products  
 
The uncertainties calculations which are discussed in this study concern the testing of 
performance of solar thermal collectors according to the Standard EN 12975-2: Thermal solar 
systems and components - Solar collectors - Part 2: Test methods, and the testing for thermal 
performance of solar thermal systems according to the Standard EN 12976-2: Thermal solar 
systems and components - Factory made systems - Part 2: Test methods (CEN, 2006a; CEN, 
2006b). 
A common characteristic of the solar collectors and systems efficiency testing is the fact that 
the relevant procedures do not represent direct measurements themselves. On the contrary, the 
results come up on the basis of a rather complicated procedure, the basic elements of which 
are the following:     

 According to the Standards, the energy behavior of a collector or a system can be 
sufficiently described by a specific model which relates the energy efficiency (output) 
with a series of parameters (mainly climatic ones) which influence the operation of the 
device (inputs). It is noted though, that in the cases of both collectors and systems there 
have been proposed more than one models, presenting significant differences the one to 
the other. The aim of the testing is the determination of the characteristic (constant) 
coefficients of the used model. Provided that the values of these coefficients are known, 
the model can be used for the prediction of the expected energy benefit on the assumed 
conditions. 

 The models that are used are not completely accurate, to the degree that their 
development is based on the adoption of specific simplifications. The degree of accuracy 
according to which each of the assumed models describes the actual energy behaviour of 
each product (collector or system) depends, at first place, on the quality of the model. 
Moreover, it depends on the proper implementation of the anticipated testing procedures, 
as well as on the testing product itself. 

 Even though each method presents certain individual characteristics, the implementation 
of both methods includes four basic phases: 

I. On the first phase, the experimental measurements are implemented, according to a 
clearly described testing protocol. These measurements concern, on one hand the 
parameters which influence the energy behavior of the device under test, such as 
climatic data, auxiliary heating, etc., and on the other hand quantities which can be 
directly related with the energy performance of the device. 

II. On the second phase, elaboration of the initial experimental data takes place, in order 
to produce experimental values for the inputs and outputs of the model, on a way 
which can cover as realistic as possible the anticipated operation range of the collector 
or system. 

III. On the third phase, the determination of the model coefficients is attained, on a way 
which can ensure the best possible correlation of the output(s) and inputs. The 
methodology adopted is that of the least square regression, even though there are 
specific peculiarities characterizing each testing procedure. 



IV. Finally, the fitted model is used for the assessment of the expected energy output 
under the specific operation conditions of the product. 

From the above, it is obvious that the calculation of uncertainties mostly concerns the final 
efficiency indicators which are provided to the client of the laboratory. It can be also clear that 
this calculation should count in the uncertainties associated with potential errors of the 
measuring equipment, as well as these attributed to the weakness of the energy model to 
accurately describe the actual behavior of the device under test. 
It should be noted that the uncertainty calculated by the testing laboratory, concerns the 
specific product which has been tested and not the total production of the manufacturer. It is 
impossible for the final uncertainty budget to include the uncertainty component which is 
associated with potential differences from product to product of the same type. These 
differences are related with the repeatability of the production procedures of each enterprise, 
as well as with the keeping of constant properties for the raw materials used. The assessment 
of this source of uncertainty could only be feasible on the basis of a statistical study; this 
statistical study should consider a sampling protocol of the products which would count in all 
sources of variability of the specific productive process. 
 

2.2. General principles for the estimation of uncertainty   
 

The problem of performing an uncertainty budget is actually quite straightforward in most 
cases, especially when direct measurements are concerned. There are cases though, where the 
estimation of uncertainty characterizing the quantitative results of the tests can be proven to 
be particularly complex. As a consequence, different and in some cases conflicting 
uncertainty evaluation procedures can be proposed.  

Nevertheless, in order to receive general acceptance, uncertainty analysis has to take into 
account some general principles which have been agreed on international level. It is for this 
reason that, by recent years, the international metrological community has focused on the 
elaboration of a common framework of principles for the calculation of uncertainties. The 
outcome was the Guide to the Expression of Uncertainty in Measurement, known popularly as 
the GUM, which is intended to orient metrologists into the complexities of the evaluation of 
uncertainty (BIPM, 2008a). 

From this point of view, it would not be worthless to include in the text some essential 
elements, on the basis of which the estimation of the uncertainty characterizing a specific 
quantitative result is performed: 

I. Standard uncertainties in experimental data are determined by taking into account Type Α 
and Type Β uncertainties. According to the recommendation of ISO GUM (BIPM et al., 
2008a), the former are the uncertainties determined by statistical means while the latter are 
determined by other means. 

II. The uncertainty us associated with a measurement s of a quantity S is the result of a 
combination of the Type Β uncertainty uB,s, which is a characteristic feature of the 
calibration setup, and of the Type A uncertainty uA,s, which represents fluctuation during 
sampling of data. If there is more than one independent source of uncertainty (Type B or 
Type A) ui, i=1,…,I, the final uncertainty is calculated according to the general law of 
uncertainties combination: 
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III. Type Β uncertainty uB,s derives from a combination of uncertainties over the whole 
measurement chain, taking into account all available information, such as sensor 
uncertainty, data logger uncertainty, uncertainty resulting from the possible differences 
between the measured values perceived by the measuring device. Relevant information 
should be obtained from calibration certificates or other technical data related to the 
devices used. 

IV. By nature, Type A uncertainties depend on the specific conditions of measurement and 
they account for the fluctuations in the measured quantities during the measurement. Type 
A uncertainty uA,s derives from the statistical analysis of experimental data. In some cases 
(for example in the case of the steady-state model), the best estimate s of S is the arithmetic 
means of the N repeated observations sn (n=1...N) and its Type A uncertainty is the 
standard deviations of the mean: 
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In cases where no arithmetic mean of the repetitive measurements is used, as in the case of 
the quasi-dynamic model, uncertainty uA,s is equal to zero. 

V.  The term combined standard uncertainty means the standard uncertainty in a result when 
that result is obtained from the values of a number of other quantities. In most cases a 
measured Y is determined indirectly from P other directly measured quantities X1, X2,...,XP 
through a functional relationship Y=f(X1, X2, ...XP). The standard uncertainty in the 
estimate y of Y is given by the law of error propagation, as a function of the estimates x1, 
x2, ...,xP of X1, X2,...,XP, taking also into account the respective standard uncertainties ux1, 
ux2, …uxp: 
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In cases the estimates x1, x2, ...,xP can be considered as independent one to the other, the 
relation (2.3) is simplified accordingly: 
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According to the Law of Error Propagation, the information transferred through each 
experimental observation, can be summarized on the value of the measured quantity 
(measurand), and the standard uncertainty characterizing this value. This information 
propagates through a first-order Taylor series expansion of the measurement model, allowing 
the calculation of the standard deviation (or standard uncertainty) of the final result, as 
described on the Guide to the Expression of Uncertainty in Measurement. The relation 
connecting the primary testing data to the quantity to be calculated constitutes the 
measurement model. 

It has to be noted that the use of the law of error propagation is subject to specific constraints, 
mainly in cases of non linear models, non satisfaction of the Central Limit Theorem 
requirements, or even appearance of difficulties in the determination of the sensitivity 
coefficients (BIPM et al., 2008b). This final limitation is applicable in the case of solar 
systems, examined in this work, due to the inability to formulate specific derivable equations 
addressing the calculation of the expected energy output. These limitations, combined with 
the rapid increase of the computational capacity available to the laboratories, have favored the 
use of alternative approaches, referred to as the Monte Carlo technique, which has been the 
subject of the first addendum to GUM (Burhenne et al., 2010; BIPM et al., 2008b; Wubbeler 
et al., 2008; Cox and Siebert, 2006). The selection of one or the other approach can be 
considered a matter of preference of the testing laboratory, provided that the metrological 
information used is appropriately justified. 

The basic idea of this technique concerns the propagation of distribution rather than the 
propagation of the uncertainties. In the case of a measurement model ),...,( 1 Pxxfy =  which 
calculates the value y of the measurand Y as a function of the experimental values x1,…,xP of 
the P physical quantities X1,…,XP, the implementation of the method can be summarized as 
follows: 

 For each measurement point, the information about a given value xi of the input quantity 
Xi is encoded by a specified Probability Distribution Function (PDF)

1xg . This PDF can be 
experimentally inferred from direct repeated measurements of the input quantity or 
assigned to the primary input estimate on the base of the Principle of Maximum Entropy 
(Lira et al., 2009). 

 

 

 

 

 

 

 

 
Figure 2.1: Schematic representation of the Monte-Carlo approach  

 

 A suitable algorithm is used to generate, for each primary source value xi, a high number 
sequence of N values xi,j, j=1,…,N, the statistical properties of which approximate those of 
the respective PDF 
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 The measurement model ),...,( 1 Pxxfy = is used N times, one time for each of the N 
combinations x1,j,…,xP,j, j=1,…,N. Thus, N values yj, j=1,…,N of the result are produced 
(Figure 2.1), allowing the formulation of a discrete representation yg  of the PDF for the 
measurand Y.  

 The distribution yg  allows the calculation of the average y and standard deviation yu , 
considered the best possible estimates of the value of Y and of the associated standard 
uncertainty: 
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3. Uncertainties in solar thermal collector efficiency testing 
 
3.1. The testing method  
 

In this section, a step-by-step methodology for the estimation of the contribution of all the 
uncertainty components on the basis of the EN 12975-2 test procedure is carried out, in order 
to determine the final uncertainty in the characteristic equation parameters and the 
instantaneous efficiency of a solar thermal collector.  

As it has been indicated in the introduction, the procedure for the assessment of the 
uncertainty characterizing a quantitative result is not unique, and other approaches can also be 
implemented, given that they are compatible with the up-to-date metrological concepts for the 
estimation of metrological uncertainty. Moreover, the whole procedure has to be adjusted to 
the particular conditions of each laboratory. For a more detailed review of the different 
aspects of determination of uncertainties in solar collector testing see also (Mathioulakis et al., 
1999; Müller-Schöll and Frei, 2000; Sabatelli et al., 2002). 

The basic target of solar collector efficiency testing is the determination of the coefficients of 
the characteristic equation of the solar collector, through the measurement of the efficiency in 
certain conditions. More specifically, it is assumed that the energy performance of the 
collector can be described by a M-parameter single node, steady state or quasi-dynamic model 
(measurement model): 
 

MM xcxcxcy +++= ...2211         (3.1) 

 

where: 

y is a dependent variable, typically a quantity related to the collector efficiency, the values 
of which are determined experimentally through testing. 

x1, x2,…,xM are independent variables, the values of which are also determined 
experimentally through testing. 

c1,c2,…,cM are characteristic constants of the collector.  

 

The aim of the test is the determination of the values of the characteristic coefficients 
c1,c2,…,cM  in a manner according to which the experimental values of y and x1, x2,…,xM could 
fit as good as possible with equation 3.1 (best fit). 

In the case of the steady state model: M=3, y=n, c1= η0, c2=U1, c3=U2, x1=1, x2=(Tm-Ta)/G 
and x3=(Tm -Ta)2/G. 

In the case of the quasi-dynamic model, in its simplest form, the respective parameters are: 
M=6, y= AQ /& , c1=η0,b,en, c2= η0,b,enb0, c3= η0,b,enKθd, c4=c1, c5=c2, c6=c5, x1=Gb, 
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θbG , x3=Gd, x4=-(tm-ta), x5=-(tm-ta)2, x6=

dt
dtm− . Similar is the treatment of 

quantities which are involved in the other forms of the quasi-dynamic model, namely when 
the influence of the wind velocity or of long-wave thermal radiation is considered. 

During the experimental phase, the output energy of the collector and the involved climatic 



quantities (incident solar radiation, ambient temperature, wind velocity, etc.), are measured in 
J steady-state or quasi-dynamic state points, depending on the model used. From these 
primary measurements the values of parameters y, x1, x2,…,xM are derived for each point of 
observation j, j=1…J. Generally, the experimental procedure of the testing leads to a 
formation of a group of J observations which comprise, for each one of the J testing points, 
the values of y, x1, x2,…,xM. 

 
3.2. Uncertainties associated with experimental data  
 

For the determination of uncertainties, it is essential to calculate the respective combined 
standard uncertainties 

jyu , 
1,jxu , …, 

Mjxu
,

 of the dependent variable, as well as of the 
independent ones, in each observation point. It should be noted that in practice these 
uncertainties are almost never constant and same for all points, but each testing point has its 
own standard deviation. 

The uncertainty in the quantities correlated through equation 3.1 is not directly known, but it 
can be calculated according to the metrological characteristics of the measurement devices. 
For this indirect calculation, the law of error propagation is implemented, as noted in section 
2. 

An example of such indirect determination in the case of solar collector efficiency testing is 
the determination of instantaneous efficiency η, which derives from the values of global solar 
irradiance in the collector level G, fluid mass flowrate m, temperate difference ∆T, collector 
area Α and specific heat capacity Cp: 
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Thus, in this case the standard uncertainty uη in each value η of instantaneous efficiency is 
calculated by the combination of standard uncertainties in the values of the primary measured 
quantities, taking into account their relation to the derived quantity η. By assuming that the 
quantities entering the second part of relation 3.2 are not correlated, and the value of Cp is 
known with negligible uncertainty, the standard uncertainty in the values of n can be 
estimated by the relation:  
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The information related to the uncertainty characterizing the primary measured quantities has 



to be derived by information coming from the calibration of sensors used in practice.    

Another example can refer to the assessment of uncertainty in the measurements of global 
solar irradiance G. The uncertainty in the indications of pyranometer is found by taking into 
account several potential sources of error: non linearity, temperature dependence of 
sensitivity, spectral sensitivity, cosine and azimuth response, response time and calibration 
errors. The value of the uncertainty component associated with each one of the error sources 
has to be estimated through the consideration of the respective measurement conditions as 
well as the characteristics of the used equipment. In the case, for example, of the steady state 
method, the errors associated with the spectral sensitivity, the cosine and azimuth response 
and the response time can be considered negligible, in view of the fact that measurements are 
performed under clear sky with vertical incidence and practically constant irradiance. The 
final value of uncertainty would be calculated through the implementation of the law of error 
propagation, namely as the square root of the quadratic sum of all the remaining uncertainties 
components. 

 
3.3. Fitting and uncertainties in efficiency testing results 
 

Following the completion of the test, the elaboration of the primary experimental data leads to 
J testing points, namely J sets of values of the dependent variable y and the M independent 
variables x1, x2,…,xM, which can be written in matrix form: 
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A least square fitting of the model equation is performed, in order to determine the values of 
coefficients c1, c2,…,cM for which the model of  equation 3.1 represents the series of J 
observations with the greatest accuracy. However, very often, in order to be in compliance 
with the requirements of accreditation and certification (EN ISO/IEC 17025), not only the 
coefficients, but also their variances and covariances are required for uncertainty analysis of 
results produced by any further use of the fitted model.  

The deviations of the model from the real data can be attributed to experimental errors but 
also to model weaknesses. In any case, the basic working hypothesis considers the model to 
be suitable for the description of the related to experimental observations phenomena.  

The basic methodology is almost always the same (Press et al., 1996): a figure-of-merit 
function is selected, to give an indication of the difference between the real data and the 
model. After this, the model parameters are selected so that the value of this function is 
minimized.   

The most commonly used method for the fitting is this of the ordinary least squares (OLS), 
being also easy to implement. Ordinary least squares technique is based on a set of hypotheses 
that are not always fulfilled, mainly referring to the absence of errors on the values of the 



independent variables and, often, to the homoscedasticity of the errors associated with the 
values of dependent variable. However, in practice, measured data are always subject to some 
uncertainty. Thus, through the procedure of best fit determination, as in the case treated here, 
a method is required for fitting the linear model to data with uncertainties in both dependent 
and independent coordinates. 

In the case where only the values of the dependent variables are precisely known, the figure-
of-merit function to be minimized presents the following form: 
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Where 2
Yu  is the covariance (or uncertainty) matrix associated with the vector Y. Assuming 

that the covariance matrix 2
Yu  is diagonal, that is to say that the measurements Y1,…,YJ are 

independent one to the other, the relation 3.6 is written: 
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For the case the uncertainties characterizing the values xj,m of the independent variables can 
not be considered as negligible, the figure-of-merit function to be minimized becomes (Lira, 
2000): 
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where 2
Xu  is the covariance (or uncertainty) matrix associated with the matrix Χ. 

The derivation of equation 3.7 for the finding of its minimum value is quite complicated due 
to the non linear character it presents. For the needs of usual metrological applications, 
various approximate methods have been proposed, each one presenting different degree of 
difficulty. Within the context of the present investigation, the so-called “effective variance” 
approach is adopted, the implementation of which is justified in cases where the input 
uncertainty matrices can be considered as diagonal, as it is valid for the case concerning this 
work. According to this approach, the overall variance in each observation point results 
through the “transferring” of the uncertainties in X to those in Y and treating X as exactly 
known quantities (Lira, I.; Cecchi, 1991; Press et al., 1996):  
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In this case, the normal equation of the least square problem can be written: 
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where C is a vector whose elements are the fitted coefficients, K is a matrix whose JxM 
components kj,m are constructed from M basic functions evaluated at the J experimental values 
of x1, …,xM weighted by the uncertainty uj , and L is a vector of length J whose components lj 
are constructed from values of yj to be fitted, weighted by the uncertainty uj: 
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Given that for the calculation of variances 2
ju  the knowledge of coefficients c1, c2,…,cM is 

needed, a possible solution is to use the values of coefficients calculated by ordinary least 
squares fitting as the initial values. These initial values can be used in equation 3.6 for the 
calculation of 2

ju , J=1…J and the formation of matrix K and of vector L. 

The solution of equation 3.12 gives the new values of coefficients c1, c2,…,cM, which however 
are not expected to differ noticeably from those calculated by standard least squares fitting 
and used as initial values for the calculation of 2

ju : 

 

( ) ( )LKKKC TT 1−
=            (3.12) 

 

Moreover, Z=INV(KT•K) is the uncertainty matrix whose diagonal elements zk,k are the 
squared uncertainties (variances) and the off-diagonal elements zk,l= zl,k, k≠l are the covariance 
between fitted coefficients: 

 

mmc zu
m
= , m=1,…,M        (3.13) 



 

Cov(ck,cl)= zk,l= zl,k, k=1,…,M and l=1,…,M and k≠l     (3.14) 

 

It should be noted that the knowledge of covariance between the fitted coefficients is 
necessary if one wishes to calculate, in a next stage, the uncertainty ux in the predicted values 
of x using equations 3.1 and the law of error propagation (equation 2.3). 

Equation 3.12 can be solved by a standard numerical method, for example, by Gauss-Jordan 
elimination. It is also possible to use matrix manipulation functions of commonly used 
spreadsheet software. 

 
3.4. Uncertainty associated with expected solar collector efficiency  
 

What most concerns future users of the collectors is the uncertainty characterizing the values 
of the collector efficiency, when this is calculated for given values of operation conditions 
(irradiance, angle of incidence, ambient temperature, inlet water temperature etc). The 
calculation of the expected efficiency y/ can be easily done by entering in equation 1 the fitted 
coefficients [ ]TMccC ...1=  and the operation conditions [ ]/// ...

1 M
xxX = : 

 

∑
=
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1

/   or in matrix notation CXy ⋅= //      (3.15) 

 

The uncertainty in the predicted values of y can be calculated by applying the law of error 
propagation (equation 2.3), taking into account both variances and covariances of the fitted 
coefficient and considering the operation conditions /X  to be known without uncertainties: 
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or in matrix notation: 

 

( )T
y XZXu //

/ ⋅⋅=          (3.17) 

 
3.5. Consistency of the fitting and uncertainty calculation   
 

It emerges from equation 3.6 that the chi-square merit function actually gives an idea about 
the degree that the model deviation from the experimental data could be related with the 
measurement uncertainties. For a relatively good model, the deviations observed could be 



attributed to the experimental errors and the corresponding 2χ  function will have a value 
close to the number of degrees of freedom. 

More specifically, the minimum values of the figure-of-merit function 2χ , denoted as 2
oχ , 

follow approximately a chi-square distribution with ν=J-M degrees of freedom. Thus, it is 
reasonable to expect 2

oχ  to be close to J-M (Lira, 2000). If 2
oχ <<ν, the deviations of the 

fitted model from the experimental data appear to be sensitively lower than the experimental 
uncertainties. Thus, it could be reasonable to conclude that the input uncertainty matrix is 
comparatively large, and it could be eventually feasible to investigate the potential of re-
estimating the uncertainties downwards, without though such an action to be compulsory.  

On the contrary, in the case where 2
oχ >>ν, the uncertainties characterizing the experimental 

inputs do not seem to be adequate for explaining the relatively larger deviations between the 
fitted model and the experimental measurements; possible explanations can be attributed to 
the presence of outliers in the measurements results, the inadequate number of observation 
points, or even the weakness of the used model to effectively describe the energy behaviour of 
the collector under test. If the improvement of the relation 2

oχ /ν can not be achieved, then the 
model (or the estimation procedure) should be called into question. Moreover, the uncertainty 
resulting from equation 3.16 should be enhanced, through the consideration of an additional 
component expressing the weakness of the model to describe the actual behavior of the 
collector. 

An alternative way for the evaluation of the consistency of the fitting and of the uncertainty 
calculation which has been proposed in the relevant literature and leads to similar results is 
based on the calculation of the probability Q(0.5ν, 0.5 2

oχ ) that the data do not fit the model 
by chance (Press et al., 1996). This probability can be calculated by using the incomplete 
gamma function: 
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                   (3.18) 

 

The probability Q can be explained as a quantitative indication of goodness-of-fit for the 
specific model. Generally speaking, if Q is larger than 0.1, then the goodness-of-fit is 
believable. If it is larger than 0.001, then the fit may be acceptable, under certain conditions. 
If Q is less than 0.001, then the model (or the uncertainty estimation procedure) can be called 
into question. 

 
3.6. Example of method application 
 

The results of the measurements through the testing of a solar collector according to 
EN12975-2 are presented in table 1 and figure1. As pointed previously, in the case of the 
steady state model, M=3, y=n, c1= η0, c2=a1, c3=a2, x1=1, x2=(Tm-Ta)/G and x3=(Tm -Ta)2/G. 

More specifically, in table 1 the following parameters are presented: 

 The values of the efficiency indicator n (dependent variable) in cells C3:C36. 



 The values of the independent variables x1=1, x2=(Tm-Ta)/G and x3=(Tm -Ta)2/G in cells 
D3:F38. 

 The standard uncertainties characterizing the values of the dependent and independent 
variables, as these have been calculated by the primary measurements on the basis of the 
metrological characteristics of the measuring equipment used (cells G3:G38 and H3:J38 
respectively). The uncertainty of the values of variable x1 is not indicated, as it is zero 
(constant value x1=1).  

 
Table 3.1: Test data  

a/a y=n x2= *T  x3=
2* )(TG  un uT* uG.T*

2 
1 0,4671 0,0496 2,4771 0,0131 0,0013 0,0762 
2 0,4687 0,0485 2,4198 0,0131 0,0013 0,0746 
3 0,5709 0,0294 0,8847 0,0153 0,0009 0,0344 
4 0,5647 0,0297 0,8913 0,0152 0,0009 0,0347 
5 0,6516 0,0113 0,1291 0,0174 0,0005 0,0108 
6 0,6480 0,0114 0,1313 0,0172 0,0005 0,0107 
7 0,7035 -0,0003 0,0001 0,0185 0,0004 0,0004 
8 0,7019 0,0000 0,0001 0,0184 0,0005 0,0032 
9 0,7007 -0,0001 0,0001 0,0184 0,0004 0,0007 
10 0,6993 -0,0001 0,0002 0,0184 0,0005 0,0019 
11 0,6688 0,0079 0,0641 0,0176 0,0005 0,0074 
12 0,6668 0,0078 0,0618 0,0176 0,0005 0,0071 
13 0,5793 0,0276 0,7570 0,0155 0,0008 0,0317 
14 0,5721 0,0289 0,8211 0,0154 0,0009 0,0331 
15 0,4829 0,0478 2,3688 0,0132 0,0013 0,0730 
16 0,4865 0,0478 2,3730 0,0133 0,0013 0,0733 
17 0,4746 0,0510 2,6606 0,0130 0,0014 0,0810 
18 0,4701 0,0512 2,6596 0,0129 0,0014 0,0807 
19 0,5784 0,0304 0,9569 0,0154 0,0009 0,0362 
20 0,5762 0,0305 0,9592 0,0153 0,0009 0,0363 
21 0,6635 0,0116 0,1386 0,0175 0,0005 0,0110 
22 0,6659 0,0112 0,1294 0,0175 0,0005 0,0107 
23 0,7102 0,0008 0,0009 0,0185 0,0004 0,0009 
24 0,7073 0,0012 0,0016 0,0185 0,0004 0,0012 
25 0,7119 0,0009 0,0011 0,0186 0,0004 0,0011 
26 0,7128 0,0009 0,0010 0,0186 0,0004 0,0010 
27 0,6569 0,0108 0,1155 0,0174 0,0005 0,0100 
28 0,6624 0,0104 0,1090 0,0174 0,0005 0,0097 
29 0,5810 0,0289 0,8388 0,0155 0,0008 0,0334 
30 0,5831 0,0284 0,8204 0,0156 0,0008 0,0328 
31 0,4747 0,0486 2,3812 0,0130 0,0013 0,0737 
32 0,4758 0,0481 2,3308 0,0130 0,0013 0,0726 
33 0,4167 0,0588 3,5147 0,0118 0,0015 0,1028 
34 0,4138 0,0581 3,4663 0,0118 0,0015 0,1011 
35 0,4166 0,0579 3,4391 0,0117 0,0015 0,1007 
36 0,4143 0,0593 3,5489 0,0117 0,0015 0,1034 

 

 The initial values of the coefficients, to be used in equation 11 (cells I42:K42). This value 
is calculated through the ordinary least square method (LINEST function of excel). 



1 B C D E F G H I J K L

2 Α/Α y=n x1 x2=T* x3=G.T*2 un ux1 uT* uG.T*
2 u=(un+uT*.n1+uG.T*

2.n2)0.5

3 1 0.4671 1.0000 0.0496 2.4771 0.0131 0.0000 0.0013 0.0762 0.0141
4 2 0.4687 1.0000 0.0485 2.4198 0.0131 0.0000 0.0013 0.0746 0.0142
5 3 0.5709 1.0000 0.0294 0.8847 0.0153 0.0000 0.0009 0.0344 0.0157
6 4 0.5647 1.0000 0.0297 0.8913 0.0152 0.0000 0.0009 0.0347 0.0156
7 5 0.6516 1.0000 0.0113 0.1291 0.0174 0.0000 0.0005 0.0108 0.0176
8 6 0.6480 1.0000 0.0114 0.1313 0.0172 0.0000 0.0005 0.0107 0.0173
9 7 0.7035 1.0000 -0.0003 0.0001 0.0185 0.0000 0.0004 0.0004 0.0186

10 8 0.7019 1.0000 0.0000 0.0001 0.0184 0.0000 0.0005 0.0032 0.0185
11 9 0.7007 1.0000 -0.0001 0.0001 0.0184 0.0000 0.0004 0.0007 0.0185
12 10 0.6993 1.0000 -0.0001 0.0002 0.0184 0.0000 0.0005 0.0019 0.0185
13 11 0.6688 1.0000 0.0079 0.0641 0.0176 0.0000 0.0005 0.0074 0.0177
14 12 0.6668 1.0000 0.0078 0.0618 0.0176 0.0000 0.0005 0.0071 0.0177
15 13 0.5793 1.0000 0.0276 0.7570 0.0155 0.0000 0.0008 0.0317 0.0159
16 14 0.5721 1.0000 0.0289 0.8211 0.0154 0.0000 0.0009 0.0331 0.0157
17 15 0.4829 1.0000 0.0478 2.3688 0.0132 0.0000 0.0013 0.0730 0.0142
18 16 0.4865 1.0000 0.0478 2.3730 0.0133 0.0000 0.0013 0.0733 0.0143
19 17 0.4746 1.0000 0.0510 2.6606 0.0130 0.0000 0.0014 0.0810 0.0141
20 18 0.4701 1.0000 0.0512 2.6596 0.0129 0.0000 0.0014 0.0807 0.0141
21 19 0.5784 1.0000 0.0304 0.9569 0.0154 0.0000 0.0009 0.0362 0.0158
22 20 0.5762 1.0000 0.0305 0.9592 0.0153 0.0000 0.0009 0.0363 0.0157
23 21 0.6635 1.0000 0.0116 0.1386 0.0175 0.0000 0.0005 0.0110 0.0176
24 22 0.6659 1.0000 0.0112 0.1294 0.0175 0.0000 0.0005 0.0107 0.0177
25 23 0.7102 1.0000 0.0008 0.0009 0.0185 0.0000 0.0004 0.0009 0.0186
26 24 0.7073 1.0000 0.0012 0.0016 0.0185 0.0000 0.0004 0.0012 0.0186
27 25 0.7119 1.0000 0.0009 0.0011 0.0186 0.0000 0.0004 0.0011 0.0187
28 26 0.7128 1.0000 0.0009 0.0010 0.0186 0.0000 0.0004 0.0010 0.0187
29 27 0.6569 1.0000 0.0108 0.1155 0.0174 0.0000 0.0005 0.0100 0.0175
30 28 0.6624 1.0000 0.0104 0.1090 0.0174 0.0000 0.0005 0.0097 0.0176
31 29 0.5810 1.0000 0.0289 0.8388 0.0155 0.0000 0.0008 0.0334 0.0159
32 30 0.5831 1.0000 0.0284 0.8204 0.0156 0.0000 0.0008 0.0328 0.0159
33 31 0.4747 1.0000 0.0486 2.3812 0.0130 0.0000 0.0013 0.0737 0.0141
34 32 0.4758 1.0000 0.0481 2.3308 0.0130 0.0000 0.0013 0.0726 0.0140
35 33 0.4167 1.0000 0.0588 3.5147 0.0118 0.0000 0.0015 0.1028 0.0134
36 34 0.4138 1.0000 0.0581 3.4663 0.0118 0.0000 0.0015 0.1011 0.0133
37 35 0.4166 1.0000 0.0579 3.4391 0.0117 0.0000 0.0015 0.1007 0.0133
38 36 0.4143 1.0000 0.0593 3.5489 0.0117 0.0000 0.0015 0.1034 0.0134
39
40

41 L a2 a1 n0

42 n/σ 1/σ Τ*m/σ G.Τ*m/σ ε -0.01503 -3.9987507 0.705678875
43 1 33.048576 70.750068 3.505733 175.25816 0.049662053
44 2 33.104808 70.629049 3.4239991 170.90881 0.223789607

45 3 36.453858 63.849494 1.8773544 56.489495 0.072938324

46 4 36.292004 64.264296 1.9079458 57.277936 0.349561054 c1=n0= 0.705
47 5 37.120751 56.966669 0.6417366 7.3532747 0.165240638 c2=a1= -3.943
48 6 37.358358 57.651574 0.6557855 7.5669752 0.351772369 c3=a2= -0.016
49 7 37.875129 53.839755 -0.017006 0.0074308 0.026138181
50 8 37.872367 53.958406 -0.001468 0.0051216 0.034925271
51 9 37.866182 54.043634 -0.007968 0.0066522 0.077717672

52 10 37.837002 54.110301 -0.00646 0.0134528 0.121746709
53 11 37.681247 56.339857 0.4445925 3.6114085 0.058120025 0.00003 -0.00222 0.00003
54 12 37.746117 56.607662 0.4399809 3.4985281 0.148275776 -0.00222 0.25692 -0.00402
55 13 36.484082 62.976224 1.7409036 47.673645 0.091758737 0.00003 -0.00402 0.00007
56 14 36.333507 63.506856 1.8361741 52.145928 0.144842719
57 15 34.070561 70.550099 3.3709257 167.12095 0.077593458

58 16 34.066508 70.017639 3.3466016 166.15086 0.290090881 uno= 0.006 cov(no,a1)= -0.0022
59 17 33.636108 70.879818 3.6159935 188.58309 0.848100452 ua1= 0.507 cov(a2,a1)= -0.004
60 18 33.422024 71.088144 3.6429857 189.06462 0.454336005 ua2= 0.008 cov(no,a2)= 2.9E-05
61 19 36.621143 63.313539 1.9274655 60.582714 0.289663063
62 20 36.593408 63.504415 1.9380895 60.913115 0.178950967
63 21 37.708667 56.832618 0.6575024 7.8780264 0.120067146
64 22 37.716518 56.641583 0.6358809 7.329351 0.156073192

65 23 38.123504 53.683693 0.0438984 0.0467144 0.191432815 X 2 = 5.9
66 24 38.059309 53.808356 0.0628083 0.0866694 0.130044426 ν =J-M= 33
67 25 38.120982 53.546342 0.0474841 0.0578552 0.298323745
68 26 38.113303 53.467675 0.0472147 0.0533985 0.351479106
69 27 37.562001 57.184225 0.6167654 6.6058788 0.052478814

70 28 37.710446 56.92634 0.5927688 6.2047397 4.18155E-08

71 29 36.539641 62.887027 1.8143556 52.747609 0.034696033 x/
1 x/

2 x/
3

72 30 36.622318 62.803494 1.783135 51.521976 0.034286215 1 0.0375 1.125
73 31 33.752169 71.100761 3.4529419 169.3037 0.004887634 n= 0.539
74 32 33.863663 71.176568 3.4204446 165.89893 0.037806338 u n = 0.006
75 33 31.170569 74.801166 4.3968793 262.90615 0.001856411 U n = 0.013
76 34 31.039868 75.008399 4.3602357 260.00064 0.260981309
77 35 31.348268 75.24786 4.3539543 258.78782 0.17263586
78 36 31.005969 74.836187 4.435084 265.58741 0.001512212

Initial values

OK
Consistency check

G=800 Wm-2, Tm-Ta=30 K

K

[inv(KT*K)]*KT*L

Z=(KT*K)-1

Uncertainties and covariances

Uncertainty Matrix

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Typical calculation example in excel  



 The total standard deviation u for every observation point, according to relation 3.3 (cells 
K3:K38). 

 The values of matrix K and vector L, according to relations 3.10 and 3.11 (cells C43:C78 
for vector L and D43:F78 for matrix K). 

  The final values of the coefficients, as calculated by equation 3.12 through the use of the 
excel function (cells J46:J48, excel formulae: MULT(MINVERSE(MMULT 
(TRANSPOSE(D43:F78);D43:F78));MMULT(TRANSPOSE(D43:F78);C43:C78)). 

 The coefficient’s uncertainty matrix Z (cells I53:K55, excel formulae: 
MINVERSE(MMULT(TRANSPOSE(D43:F78);D43:F78)). 

 The coefficient’s uncertainties (cells J58:J60), as the square root of the diagonal elements 
of the uncertainty matrix Z, and their covariance’s (cells L58:L60), as the off-diagonal 
elements of the same matrix. 

 The consistency check (cells J65:K66), based on the comparison of the minimum value of 
figure-of-merit function x2 with the number ν of degree o freedom. 

 A calculation example, for G=800 Wm-2 and Tm-Ta=30 K, of the associated standard 
uncertainty nu  (cell J74) and the associated expanded uncertainty nU  of the expected 
efficiency (cell J73), for a coverage probability of 95% (cell J76). 

 

 



4. Uncertainties in solar thermal systems efficiency testing 
 
4.1. General 
 

The expected energy output presents the most important quantity, within those quantities used 
for the energy characterization of the systems utilizing renewable energy sources in general, 
and solar domestic hot water systems (SDHWS) more specifically. The continuously 
increasing penetration of energy certification schemes and the connection of the expected 
energy gains with supporting actions, motivated by the demand on the users part for reliable 
performance data of solar thermal products, makes necessary the estimation of uncertainty 
characterizing the test results. This estimation should be performed on the basis of a 
commonly accepted, scientifically sound methodology.  

The quantitative estimation of the energy behaviour of a SDHWS is performed according to 
the valid international standards, through the implementation of specific experimental 
sequences, involving measurement of climatic data and energy related system quantities 
(CEN, 2006; ISO, 1995). The exploitation of the measurements data for the calculation of the 
expected annual energy output involves calculations on multiple stages, noting that it is not 
possible to formulate explicitly a measurement model for the connection of primary 
experimental testing data with the calculated result. The absence of such a model leads to 
specific difficulties as regards the estimation of uncertainty on the final energy result, to the 
degree that it makes the adoption of the conventional approach for error propagation 
impossible. 

Standard EN12976-2 proposes two methods for the performance testing of SDHWS, the DST 
and CSTG method, on the basis of two different approaches for the modeling of the energy 
behaviour of the systems (CEN, 2006). The two methods are considered equivalent, while a 
coefficient for the conversion of the results of the one method to the other is proposed.  

The method CSTG is based on a relatively simple model of energy behavior, which treats the 
SDHWS as a black-box, while the model of the DST method is more detailed and involves 
the characteristics of the individual components. 

The evaluation of the performance of the one or the other method exceeds the scope of the 
present study. It should be noted though that, as regards the estimation of uncertainties, the 
DST method presents some additional difficulties related to the energy model used, as this 
model is not exactly known and the calculations implemented by the respective software are 
not known to the user. On the contrary, the steps which have to be implemented during the 
application of the CSTG method are transparent and clearly defined, while the relevant 
software is clearly described in the Standard. On this point of view, the analysis for the 
estimation of uncertainties is different for each one of the two methods. 

 
4.2. The CSTG testing method 
 

4.2.1. Non-algebraic model and Monte-Carlo simulation 

 

The quantitative estimation of the energy behaviour of a SDHWS is performed according to 



the valid international standards, through the implementation of specific experimental 
sequences, involving measurement of climatic data and energy related system quantities 
(CEN, 2006; ISO, 1995). The exploitation of the measurements data for the calculation of the 
expected annual energy output involves calculations on multiple stages, noting that it is not 
possible to formulate explicitly a measurement model for the connection of primary 
experimental testing data with the calculated result. The absence of such a model leads to 
specific difficulties as regards the estimation of uncertainty on the final energy result, to the 
degree that it makes the adoption of the conventional approach for error propagation 
impossible (see section 2). 

The objective of this work is the estimation of uncertainty characterizing the expected annual 
energy output of a SDHWS, as calculated through the tests performed according to the valid 
international standard (ISO, 1995). The adoption of the respective approach is justified by the 
fact that the standard proposes validated and internationally accepted testing and calculation 
procedures, which are also recognized by market actors and potential users.  

For the estimation of the effect of the metrological quality of used measurement equipment, 
Monte-Carlo simulation techniques are exploited. In the analysis the uncertainty related to the 
imperfections of the energy model for the behaviour of SDHWS assumed by the standards is 
counted in, as well as the uncertainty attributed to the natural variance of the meteorological 
data. The final scope is the provision, to the future user of the test results of a SDHWS, of 
sufficient and reliable information regarding the energy benefit by the operation of the system 
in actual working conditions. 

It is noted that, even if the potential user’s confidence in performance indicators of renewable 
energy systems is of high importance, no specific investigation for SDHWS has been 
recorded in the relevant literature, opposite to the case of solar collectors (Li and Lu, 2005; 
Mathioulakis et al., 1999). A previous work is mentioned, proposing a systematic 
investigation of the parameters affecting the quality of the test result and aiming at the 
optimization of the test method itself, without, though, proposing assessment of uncertainties 
in compliance with up‐to‐date metrological concepts for the estimation of metrological 
uncertainty (Bourges et al., 1991). 

For the needs of the present analysis, the case of a performance test of a typical SDHWS, with 
a collector surface of 3.76 m2 and tank volume of 191 l, has been selected. Measurements 
have been performed with calibrated equipment, and the anticipated procedures by the 
EN12976-2 Standard have been strictly followed. Even though the specific quantitative 
results concern the tested solar system, the proposed methodology can be implemented for 
any other type of SDHWS. Moreover, any deviation from the requirements of the standard 
(e.g. different energy model or load profiles) does not exclude the implementation of the 
proposed methodology, even though the final results may be influenced. 

In 4.2.2 the testing method is presented with emphasis on the propagation of information from 
the primary experimental testing data to the final result of the expected energy output. 4.2.3 
deals with the methodology proposed for the estimation of uncertainty by examining the 
different components in detail. In 4.2.4, results concerning a typical SDHWS are presented, 
while in 4.2.5 basic conclusions are discussed.  

 

4.2.2. Test method and measurement model 

According to the CSTG method, thermal energy Q, accumulated on the storage tank of a 
SDHWS by the duration of the day, is correlated to the incident daily solar radiation on the 



collectors surface H, the mean daily ambient temperature aT  and the temperature Tsin of the 
tank at the beginning of the day, through the characteristic equation of the system (Belessiotis 
et al., 2010; CEN, 2006; ISO, 1995): 

 

Q =a1 H + a2 ( aT -Τsin) + a3        (4.1) 

 

The estimation of the expected energy output is performed on two stages (Figure 4.1). At the 
first stage, that of testing, specific experimental scenarios are realized, aiming at the 
determination of specific energy characteristics of the solar system, as the coefficients a1, a2 
and a3 of the characteristic equation, the heat losses coefficient of the storage tank Us, as well 
as the two dimensionless draw-off profiles, h and g, characterizing the distribution of 
temperature on a homogenized and non-homogenized tank respectively. 

The coefficients a1, a2 and a3 of the characteristic equation are determined by the multi-factor 
least-squares method, on the basis of a series of daily tests. According to the scenarios of 
these tests, the system begins operation in the morning, the storage tank being on a known 
initial temperature, which would be the temperature of the tank at the end of the day, after the 
drawing off of the thermal energy Q accumulated during the daytime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. Flow-chart of actions required for the calculation of the expected energy output 
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the duration of the day. The daily useful energy gain Q is calculated by integration, 
considering the draw-off flow-rate m& and the temperatures Tin and Tout of the water on the 
inlet and outlet of the tank respectively:  

 

( )dtTTCmQ inoutp −= ∫ &         (4.2) 

 

For the calculation of the heat losses coefficient, Us, the tank is initially heated up to a 
homogeneous temperature Ti, and stays still for a time period tδ of about 12 hours. By the end 
of this period, the tank is homogenized and the final temperature Tf is measured. Knowledge 
of the thermal capacity of the storage, pmC , and the mean ambient temperature aT  during the 
test, enables calculation of the heat losses coefficient through the following relation: 
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         (4.3) 

 

It is noted that temperatures Ti and Tf are measured by sensors placed on the inlet and outlet of 
the storage tank, which is also the case for the determination of the non-dimensioned 
distributions h and g. 

At the second stage, that of the expected energy output calculation, the energy characteristics 
identified through the tests are used for the calculation of the expected energy output. 
Calculations are performed for a specific site, where the system is expected to be installed, for 
conditions determined by the Typical Meteorological Year (TMY) of this area and for specific 
hot water use patterns. The calculation is based on a procedure explicitly determined by the 
Standard, according to the following steps: 

I. For each one of the 365 days of the year, the expected accumulated energy on the solar 
tank during the day is calculated by equation 4.1, considering the storage temperature 
by the beginning of the day and the TMY data. 

II. The remaining energy in the tank by the end of the day is calculated after subtracting 
the thermal energy consumed by the user. 

III. The available energy by the beginning of the following day is determined after counting 
the heat losses by the night time. 

IV. Return to step 1, and continuation of calculations for the following day, until the end of 
the year. 

The whole procedure involves a series of discrete calculation activities, the combination of 
which can be considered as the measurement model (Figure 4.2). The primary data that the 
measurement model uses as inputs, are the ambient temperature Ta, temperatures on the inlet 
and outlet of the storage tank Tin and Tout respectively, the flow rate of water on the outlet of 
solar tank, as well as the instantaneous solar radiation flux G. The output of the measurement 
model is the expected annual energy production, Ql.  

It is noted that the measurement model describes the relation of the final result to the primary 
experimental data, and should not be confused with the energy model which describes the 
energy behaviour of the system, as formulated by equation 4.1.   



 

  

 

 

 

 

 

 

 

  
Figure 4.2. Correlation of the result to primary experimental test data (measurement model)  

 

In terms of the estimation of uncertainties, the error propagation approach can be 
implemented for the determination of uncertainties related with the intermediate quantities. 
Nevertheless, the part of the measurement model connecting the energy output Ql with the 
intermediate quantities, cannot be formulated as a set of derivable equations, thus the error 
propagation approach cannot be implemented. In order to overcome this limitation, the 
Monte-Carlo technique can be adopted for this part of the model (see section 2 and Figure 
2.1).  

 

4.2.3. Sources of uncertainty and influence on the final result 

 

4.2.3.1. Assumptions and methodological approach 

It is commonly accepted that the uncertainty associated with the result of a measurement, is 
not a property of the quantity under measurement but it characterizes the measurement 
method and the metrological quality of the measuring equipment (BIPM et al., 2008a). For 
reasons related to the capability of generalizing the conclusions of the specific investigation, 
the assumption that the used measuring equipment complies with the metrological 
requirements of the Standard is made. In case a laboratory achieves higher metrological 
performance, the uncertainties can be reassessed through the same methodological approach. 
It is also noted that: 

• The assumption that the requirements of the Standard regarding the implementation of the 
test method are satisfied is made. Potential deviations from the method can introduce 
additional uncertainty components, which should be assessed case dependently. These 
deviations could concern the testing scenarios, the energy model of the system (equation 
4.1), or the adoption of different load profiles. 

• The calculated uncertainties concern the expected energy output of a SDHWS identical to 
the tested one. Even though other systems of the same type would present slightly different 
performance, experience shows that in the case of products coming out of the same 
production line, these differences are quite limited and do not constitute a remarkable 
source of uncertainty. 
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• The load pattern implemented by the user of a SDHWS predominantly influences the 
expected energy output, and, in consequence, the uncertainty characterizing this figure. 
Within the context of the present work, the energy accumulated in the solar tank is 
considered to be drawn-off by the end of each day of the year, as anticipated in the 
standard (CEN, 2006). A large volume of water drawn-off is considered (3 times the 
volume of the tank), a choice which is of higher interest to the user, to the degree that it 
practically corresponds to the maximization of energy gain through the use of the system. 
However, the influence on the expected energy output of assuming different values for the 
volume of the water drawn-off is investigated, as it will be shown later on. 

According to the proposed approach, the calculation of the uncertainty characterizing the 
expected annual energy output is implemented on five distinct steps, each of them 
corresponding to specific activities anticipated by the standardized testing method: 

Ι. Initially, the uncertainties related to the intermediate quantities H, ∆T, Q and Us are 
estimated, on the basis of the metrological characteristics of the measuring equipment, as 
explained in section 4.2.3.2. On the basis of the provided information, a stochastic image is 
built for each one of the values of H, ∆T, Q and Us, as described in sections 2.2 and 4.2.3.2. 

II. The stochastic information which has been produced for the experimental values of 
intermediate quantities is propagated through the measurement model, as described in section 
4.2.3.3, aiming at the estimation of both the expectation and the variance of the calculated 
energy output.  

III. The uncertainty component related to the imperfections of the energy model (equation 
4.3), i.e. its inability to explain precisely the experimental data gathered during the test, is 
estimated as discussed in section 4.2.3.4. 

IV. The uncertainty related to the fact that the meteorological conditions which may occur 
during the actual operation of the SDHWS system cannot be precisely known, is estimated as 
described in section 4.2.3.5. 

V. Finally, the combined uncertainty characterizing the final result is computed as the square 
root of the algebraic sum of the individual variance contributions (BIPM et al., 2008a). 

All calculations have been performed in a MATLAB environment. Given that the procedure 
used in the paper is complex and a large number of data is involved, special treatment 
regarding the checking of the validity of calculations has been given. This included mainly the 
comparative checking of results through the proper modification of different sources of 
uncertainty, as well as the comparison of the mean values of the expected energy output to the 
results provided by the software described in the standard (ISO, 1995). 

 

4.2.3.2. Calculation of uncertainties of intermediate quantities 

4.2.3.2.1. Uncertainties characterizing the mean temperature T  

In the case the temperature values T1, T2, …,Tn are available, the mean temperature T  is 
calculated by the following relation, which represents the measurement model as well:  
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For the calculation of the uncertainty in the value of the mean temperature T , the existence of 
potential correlations between the values collected during the day has to be taken into 
consideration. In the specific case examined in this work, the usual metrological practice for 
relevant cases has been adopted, i.e. the maximum value for the uncertainty is selected (a 
worst case scenario), the errors on the collected values being considered as fully correlated to 
one another, as the individual values have been taken by the same instrument (BIPM et al., 
2008a). Assuming that the uncertainty is the same for all measurement points, equal to uT, the 
implementation of the error propagation law leads to: 
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4.2.3.2.2. Uncertainty characterizing the daily integral of solar radiation H 

Let the solar radiation measurements G1, G2, …,Gn+1 be sampled with a time step tδ , for a 
total duration of tnt δ×=∆ . Assuming that the sampling speed is suitable for the accurate 
representation of the solar radiation variation, the daily solar energy H can be calculated 
according to the following relation: 
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The degree of correlation between the values collected during the daytime has to be taken into 
consideration. Similarly to the case of temperature, the values G1, G2, …,Gn+1, can be 
considered as correlated to one another (a worst case scenario). Given that the time step tδ  is 
known with negligible uncertainty, the implementation of the error propagation law leads to: 
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4.2.3.2.3. Uncertainty characterizing the daily energy output Q 

Let Q be the thermal energy subtracted from the tank by the end of a testing day, calculated 
by integration of the n measured values of the temperature difference in the inlet and outlet of 
the solar thermal system and the fluid flowrate m& , over the whole draw-off period ∑=∆ tt δ :  
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Given that the uncertainties of the density, specific heat capacity values and time step tδ can 



be considered negligible, and by making the assumption of totally correlated errors, the 
following relation for the uncertainty of energy output can be formulated:   
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4.2.3.2.4. Uncertainty characterizing the heat loss coefficient Us 

The storage tank heat loss coefficient is calculated according to relation (4.5), through the 
implementation of the error propagation law, considering the uncertainties of specific heat 
capacity and time values as negligible: 
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Finally, an extended sensitivity analysis has shown that the contribution of the uncertainty 
related to the non-dimensionless profiles h and g can be considered negligible, compared to 
the other sources of uncertainty, so it can be neglected. 

 

4.2.3.3. Uncertainty component related to the errors of the sensors  

As it has been previously indicated, the rather complicated non-algebraic calculation of the 
expected energy output makes the Monte-Carlo simulation a suitable choice. This approach is 
implemented in practice through the following steps: 

I. The implementation of the experimental scenarios anticipated by the testing procedure 
of the system leads to a matrix D

r
 containing the d daily values Hi, ∆Ti and Qi, i=1,...,d,  

for the quantities H, ∆T and Q: 
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II. On the basis of the metrological characteristics of the sensors used, the uncertainties 
characterizing Us, as well as the uncertainties of all the elements of the matrix D are 
calculated as described in paragraph 4.2.3.2.  

III. For each one of the elements of the matrix D
r

, as well as for Us, a large number of 



random values is produced, the statistical properties of which are identical with the 
metrological characteristics of the simulated quantity.. More specifically, the 
expectation and the standard deviation of the probability distribution assigned to each 
quantity, are equal to the measured value of this quantity and the associated standard 
uncertainty respectively. As a random number generator, the Mersenne Twiste 
algorithm has been used (Matsumoto and Nishimura, 1998), and the assumption that all 
quantities follow the normal distribution is made. A value of Ν=106 has been selected, 
since this number of trials is expected to deliver a value of expanded uncertainty which 
is correct to one or two significant decimal digits (BIPM, 2008b). 

IV. As resulting from step III, N distinct configurations jD
r

, j=1, 2,…, N of the matrix D
r

 

are produced. For each configuration jD
r

, combined with a random value Us,j of the 
coefficient Us, and the dimensionless draw-off profiles, h and g, a value Ql,j of the 
expected energy output Ql is produced: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅
⋅
⋅

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅
⋅
⋅

=

),,,(

),,,(
),,,(

,

2,2

1,1

,

2,

1,

ghUDf

ghUDf
ghUDf

Q

Q
Q

Q

NSN

S

S

Nl

l

l

l

r

r

r

r
      (4.12) 

 

V. From the N=106 values of the expected energy output produced, the mean value Ql and 
the standard deviation measQl

u , are calculated, the latter considered as an efficient 
estimation of the standard uncertainty associated with the mean value. 

 

4.2.3.4. Imperfections of the energy model and related uncertainty 

The implemented CSTG model correlates the daily energy output Q to the daily incident solar 
energy H and the temperature difference ∆T=Ta-Tsin. The specific model, as any model of this 
type, can be considered to some degree as approximate. Even though equation 4.1 describes 
satisfactorily the energy behaviour of the system, it is evident that some kind of error is 
introduced through its use, potentially affecting the quality of the results of the method. 

The component of uncertainty related to the imperfections of the energy model, expresses the 
degree the model can explain the experimental data. Thus, the effectiveness of the CSTG 
model can be quantified by the standard estimation error of the linear fitting: 
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where Qi, Hi and ∆Ti are the values measured during the d testing days of the system, and a1, 
a2 and a3 the values of the coefficients determined through the least squares approach.  



Nevertheless, the typical prediction error can be entirely attributed to the imperfections of the 
model, only in the case that the experimental observations are free of any errors. By the 
presence of experimental errors, the standard error can partially represent the imperfections of 
the model, as well as the ones of the measurement equipment. On this point of view, for cases 
where the linear fitting is repeated into every one of the Monte-Carlo simulations with 
different standard prediction error, as the one examined in this work, the study of the variance 
of the prediction error can lead to useful conclusions. 

If this standard error would remain practically constant from simulation to simulation, it could 
be promptly concluded that no significant influence of the measurement errors takes place. In 
the opposite case, that of the standard error varying as the coefficients change stochastically, 
it can be stated that this error depends on the measurement errors to some degree. Since it is 
difficult to separate these two sources of error (model and sensor imperfections), 
consideration of two independent components of uncertainty is necessary (a worst case 
scenario). In the case of a repeated Monte-Carlo simulation, the specific component of 
uncertainty mod,LQu  can be reasonably considered equal to the average value of the standard 
errors recorded through the N simulations.    

 

4.2.3.5. Uncertainty related to the variance of the meteorological conditions 

As it has been previously noted, the expected energy output is calculated for a Typical 
Meteorological Year (TMY), statistically representative of the climatic conditions expected to 
take place on the installation site of the SDHWS (BIPM et al., 2006; Gazela and 
Mathioulakis, 2001). Nevertheless, the actual energy gain for the potential user strongly 
depends on the meteorological conditions which may occur during the actual operation of the 
system. Since these conditions are a priori different from the ones included in the TMY, an 
additional source of uncertainty related to the energy output value has to be considered. 

In principle, the variability of meteorological data could be introduced in the Monte-Carlo 
simulations in the form of a statistical distribution; nevertheless such a statistic is hard to be 
determined. Moreover, the computational requirements would be difficult to satisfy, as the 
resulting number of combinations for the Monte-Carlo simulations would be very high. 

In the present work, the actual meteorological data of a significant number of years for the 
geographical area of Athens have been used for the estimation of the variance of the expected 
energy output due to the variation of meteorological conditions. For each of these 
meteorological years, the expected energy output of the system is calculated. Assuming that Y 
different years are used, the respective component of the relative uncertainty can be estimated 
by the standard deviation of the total i=1,…,Y energy output results: 
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4.2.4. Arithmetical application 

 

4.2.4.1. SDHWS and experimental measurements 

The presented methodological approach, has been implemented for the case of a typical 



domestic hot water system, with a collector aperture surface Ac=1.86 m2 and solar tank 
volume Vs=177 l. The system has been tested through the strict implementation of the 
standard requirements regarding the testing procedure, as well as the metrological quality of 
the calibrated sensors used. 

The metrological quality of the measurement setups which have been used, being compatible 
with the requirements of the standard, can be formulated on terms of standard uncertainty as 
follows: 

 For the temperature of the fluid and the difference of temperature between the inlet 
and outlet of the system: == − inout TTT uu 0.06 K. 

 For the ambient temperature: =
aTu 0.29 Κ. 

 For the flow rate of the thermal medium: =mu & 0.58 %. 

 For the incident solar radiation (by using a first class pyranometer): =Gu 2.5 % 

It is noted that within valid international standards the metrological requirements are 
formulated on accuracy terms. In these cases, the calculation of standard uncertainty Au  of a 
quantity A, is based on the consideration of an orthogonal probability distribution, correlating 
this uncertainty to the respective accuracy Aa  through the relation: 
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Table 4.1: Values of intermediate quantities and respective standard uncertainty 

Day 
Number 

Q 
[MJ] 

uQ 
[MJ] 

∆T 
[K] 

Tu∆  
[K]  H [MJ/m2] 

uH 
[MJ/m2] 

1 37.2 0.29 -7.5 0.29 23.2 0.58 
2 35.7 0.28 -6.6 0.29 22.0 0.55 
3 30.0 0.25 -6.7 0.29 18.5 0.46 
4 34.9 0.28 -3.5 0.29 20.5 0.51 
5 30.1 0.26 2.2 0.29 16.6 0.42 
6 24.2 0.23 0.0 0.29 13.3 0.33 
7 23.0 0.22 -1.6 0.29 12.9 0.32 
8 33.1 0.27 0.1 0.29 18.1 0.45 
9 22.7 0.22 -1.5 0.29 12.7 0.32 
10 21.9 0.21 -2.7 0.29 12.1 0.30 
11 26.8 0.24 -4.3 0.29 16.1 0.40 
12 28.6 0.25 -3.2 0.29 16.6 0.42 
13 32.7 0.27 -3.5 0.29 18.9 0.47 
14 25.9 0.23 -4.2 0.29 15.0 0.38 
15 21.8 0.21 -5.7 0.29 12.7 0.32 
16 16.9 0.19 -2.4 0.29 9.8 0.24 
17 27.6 0.24 0.1 0.29 15.5 0.39 
18 18.7 0.20 2.0 0.29 10.1 0.25 
19 16.1 0.19 0.0 0.29 8.7 0.22 
20 25.0 0.23 -0.3 0.29 14.0 0.35 
21 25.0 0.23 -2.0 0.29 13.9 0.35 
22 26.7 0.24 -6.6 0.29 16.8 0.42 
23 23.0 0.22 -8.6 0.29 15.0 0.38 
24 30.8 0.26 -2.9 0.29 18.0 0.45 
25 30.1 0.26 -1.6 0.29 17.4 0.44 
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Especially for the measurement of solar radiation, instead of proposing an accuracy limit for 
the measuring instrument, the testing Standard sets the requirement of using pyranometers 
belonging on the first Class category or better. According to the recommendations of the 
World Meteorology Organization (WMO), the expanded uncertainty achieved by a first Class 
pyranometer for the measurement of daily radiation is 5% at a confidence level of 95%, thus 
the respective standard uncertainty lies in the order of 2.5% (WMO, 2008). 

From the total number of the experimental measurements, 25 daily values for H, ∆T and Q 
have been selected with a view to the balance between days of low and days of high radiation. 
According to what has been mentioned in paragraph 4.2.3.2, the values of the intermediate 
quantities have been calculated, as well as the standard uncertainties characterizing these 
values (Table 4.1). The coefficient of storage tank heat losses Us has been calculated as equal 
to 2.10 W/K, with a standard uncertainty of 0.04 W/K. 

The predicted energy output Ql has been calculated for different load profiles of use, their 
difference being the quantity of hot water drawn off on a daily basis. According to the 
Standard, the calculation of the predicted annual energy output Ql is implemented for a daily 
draw-off of hot water on a temperature equal to 45oC by the end of the day. Thus, for each 
calculation of the annual energy output, the amount of water drawn-off every day as well as 
the required temperature, remain constant during the whole year. Calculation of annual energy 
output has been repeated for different volumes of daily water consumption, ranging from 1 to 
3 times the volume of the tank, the closer to the upper value of 3 times the closer to the 
complete draw-off of the collected by the system solar energy. 

 

4.2.4.2. Uncertainty component related to the errors of the measuring set-ups 

The Monte-Carlo approach has been implemented for the estimation of the value of Ql and the 
related uncertainty, according to the procedure described in 4.2.3.3. A specific hot water use 
profile has been adopted, and the geographical area of Athens has been considered as the 
installation site. A number of N=106 simulations have been performed, on the basis of data 
presented in table 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3: Probability distribution of Ql for draw off volume equal three times the volume of the tank 

 



It has been considered that the existing information provided by each experimental 
observation is expressed satisfactorily by a normal probability distribution, the expectation of 
which being the measured value and the variance being the squared standard uncertainty 
associated with this value. Simulations lead to 106 values for the expected energy output Ql. 
The statistical elaboration of these values leads to the most likely value, which is estimated by 
the mean value, as well as of the standard uncertainty, which is estimated by the standard 
deviation. 

In Figure 4.3, a characteristic probability distribution for draw off volume equal three times 
the volume of the storage tank is presented, while in Table 4.2 the values of the expected 
energy output for different profiles of hot water use are presented, the energy output being 
calculated as the mean value of the respective probability distributions. In the same table, the 
respective uncertainty values are presented, expressed as standard uncertainty measQl

u ,  and 

relative standard uncertainty 
l

measQ
measQr Q

uu l
l

,
,, = . 

 

 

Table 4.2: Expected energy output Ql ,standard uncertainty measQl
u , and relative uncertainty measQr l

u ,,  
for different values of draw-off volume Vd 

Draw-off volume Vd 3 Vs 2.5 Vs 2 Vs 1.5 Vs Vs 

Ql [kWh/m2] 875 850 776 657 474 

measQl
u ,  [kWh/m2] 14 13 11 9 6 

measQr l
u ,,  [%] 1.6  1.5 1.4 1.4 1.4 

 

 

4.2.4.3. Uncertainty component related to the imperfections of the energy model 

The uncertainty component related to the weakness of the energy model to sufficiently 
explain the experimental data has been estimated with regard to the approach described in 
4.2.3.4. In Figure 4.4, the probability distribution of the standard error Qσ  of the energy 
model of the system is depicted, as calculated by the N=106 Monte-Carlo simulations.  

The variation of the standard error from one simulation to the other indicates that the inability 
of the model (equation 4.1) to precisely explain the experimental data can be attributed, to 
some degree, to potential errors of the measuring equipment. Nevertheless, as it has been 
previously mentioned, the difficulty of separating these errors from the imperfections of the 
model itself, inevitably leads to the consideration of standard error as a discrete source of 
uncertainty (a worst case scenario). 

The uncertainty component mod,lQu , related to the suitability of the model, has been calculated 
as of 0.24 kWh/day, for draw-off volume three times the one of the tank, and consequently on 
an annual basis mod,lQu =23 kWh/m2. Expressed on relative uncertainty terms, the value of this 
component is mod,, lQru =2.6% of the expected energy output. It is noted that the value of this 
uncertainty component remains practically constant, regardless of the hot water drawn-off 
volume. 
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Figure 4.4: Probability distribution of standard error  

 

4.2.4.4. Uncertainty component related to the variation of the meteorological conditions 
The uncertainty component related to the variation of the meteorological conditions has been 
estimated according to the approach presented in 4.2.3.5. The annual energy output for 20 
consecutive years has been calculated, by using the meteorological data of the period from 
year 1989 to year 2008, for the geographical area of Athens (courtesy of the Institute of 
Environmental Research and Sustainable Development - National Observatory of Athens). 
The calculation has been implemented on the basis of the calculation method anticipated in 
Standard EN 12976-2 (CSTG method). 

 

 

 

 

 

 

 

 

 

 
Figure 4.5: Deviations of the annual energy output for 20 different meteorological years from the 20-

year mean value  

 

Typical results for a draw-off volume Vd=3Vc are presented in Figure 4.5 in terms of deviation 
from the 20-years mean values, while the related uncertainty component, calculated according 
to equation 4.14, is presented in Figure 4.6 for different draw-off volumes. The component of 
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relative uncertainty is estimated to be in the order of meteoQr L
u ,, =3.5%, a value remaining 

practically unchanged by the variation of the hot water volume drawn-off. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6: Relative uncertainty of the annual energy output for 20 different meteorological years with 

regard the hot water volume drawn-off  

 

4.2.4.5. Total combined uncertainty 
The combined standard uncertainty associated with the values of the annual expected energy 
output is calculated through the combination of the individual components: 
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The calculated uncertainty, expressed as expanded uncertainty according to the usual 
metrological practice, is in the order of 9% for a confidence level of 95% and a coverage 
coefficient of k=2. 

From the analysis of the results, it can be stated that the final uncertainty is mainly affected by 
the evident difficulty on the prediction of the meteorological conditions which might occur 
during the period the system would operate, as well as by the weakness of the model to 
accurately explain the experimental data. To a lesser degree, the final uncertainty presents 
dependence on the metrological level of the used measuring instruments, at least as far as this 
level remains within the limits indicated by the valid international standard. 

 

 

 

 

 

 



4.3. The DST method 
 

4.3.1 Test method and measurement model 

 

Unlike the CSTG method, the DST method uses a dynamic energy model for the SDHWS. 
The testing procedure anticipates the implementation of specific operation scenarios for the 
system (test sequences). By the implementation of these sequences, measurements of climatic 
data, as well as of characteristic temperatures on the inlet and outlet of the solar tank are 
performed (CEN, 2006; ISO, 2007). Moreover, by the end of each sequence, a draw-off of the 
collected thermal energy which has remained in the tank takes place. On a first phase, some 
preparation of the primary source data takes place, mainly including low pass filtering for the 
elimination of the experimental noise. On a second phase, the elaborated experimental data 
are used for the identification of the coefficients of the energy model (Figure 4.8). On a third 
phase, the fitted model is used for the prediction of the expected energy output for specific 
conditions (Typical Meteorological Years of specific sites). 

In the following paragraphs, the usual case of a typical solar-only SDHWS which has been 
installed outdoors. The experimental data recorded through the testing are the following: 

 Ta: Ambient temperature (collector and store) 

 G: Hemispherical irradiance on the collector plane 

 Tcw: Water temperature at the store inlet (mains-water temperature)  

 Ts: Store outlet temperature 

 SV& : Volumetric draw-off rate   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.7. Flow-chart of actions required for the expected energy output calculation (DST method) 

Experimental Measurements 
Ta, G, Tcw, Ts, SV&  

Calculation of SC& , PL 

Coefficients of characteristic equation (Dynamic 
fitting algorithm) 

 Typical meteorological year  
 User requirements (load) 

Annual energy gain  
Ql 



According to the procedures anticipated by the Standard, from the above mentioned 
experimental data the following quantities are calculated: 

 SwwS VcC && ρ= : Load capacitance rate through the store 

 PL= ( )cwsS TTC −& : Draw-off load power 

The problem with the DST method is that the required calculations are performed, at all 
stages, on the basis of a software which is available only in executable files form, while the 
implemented by these files algorithm is not available. Thus, the energy model used is not 
exactly known, neither the specific steps for the processing of the performance data. 
Moreover, the respective software is available only in DOS environment; this significantly 
limits the capability for the automation of the required calculations, and respectively the 
implementation of calculation-consuming approaches as the Monte-Carlo simulation. 

The above mentioned problems are also barriers to the investigation for the potential errors of 
the method, and make difficult the assessment of the uncertainty characterizing the final 
result. In following sections, an assessment of the uncertainty components is performed, 
noting though that the whole process can be proven to be quite time consuming, given the 
difficulties discussed above.   

In the case of the DST method, the basic assumptions which have been adopted in the case of 
the CSTG method are also valid (paragraph 4.2.3.1). These assumptions mainly concern: 

 the need for the requirements of the Standard regarding the implementation of the test 
method to be satisfied; 

 the fact that the calculated uncertainties concern the expected energy output of a 
SDHWS identical to the tested one and that the experience shows that in the case of 
the same production line, differences between products are quite limited and do not 
constitute a remarkable source of uncertainty; 

 the assumption that the energy accumulated in the solar tank is considered to be 
drawn-off by the end of each day of the year, as anticipated in the standard (CEN, 
2006); 

Concerning the proposed methodological approach, the calculation of the uncertainty 
characterizing the expected annual energy output is implemented on five distinct steps, each 
of them corresponding to specific activities anticipated by the standardized testing method: 

Ι. Initially, the uncertainties related to the recorded values of the quantities Ta, G, Tcw, Ts, SV&  
are estimated, on the basis of the metrological characteristics of the measuring equipment. 

II. The uncertainty component related to the potential errors of the measurement devices is 
estimated on the basis of the conclusions of a sensitivity analysis (section 4.3.2). 

III. The uncertainty component related to the imperfections of the energy model, i.e. its 
inability to explain precisely the experimental data gathered during the test, is estimated as 
discussed in section 4.3.3. 

IV. The uncertainty related to the fact that the meteorological conditions which may occur 
during the actual operation of the SDHWS system cannot be precisely known, is estimated as 
described in section 4.3.4. 

V. Finally, the combined uncertainty characterizing the final result is computed as the square 
root of the algebraic sum of the individual variance contributions (BIPM et al., 2008a). 

All calculations have been performed in a MATLAB environment. Given that the procedure 



used in the paper is complex and a large number of data is involved, special treatment 
regarding the checking of the validity of calculations has been given. 

The presented methodological approach, has been implemented for the case of a typical 
domestic hot water system, with a collector aperture surface Ac=3.76 m2 and solar tank 
volume Vs=191 l. As in the case of CSTG method, the system has been tested through the 
strict implementation of the standard requirements regarding the testing procedure, as well as 
the metrological quality of the calibrated sensors used. 

 

4.3.2. Uncertainty component related to the errors of the sensors  

 

As in the case of the CSTG method, given the non-algebraic character of the expected energy 
output calculation procedure, the most suitable method for the assessment of the specific 
uncertainty component would be this of the Monte-Carlo simulation (4.2.3.3). The inability 
though to automate the relevant calculations, due to the form of the involved software 
(protected MSDOS executables), makes this choice prohibitive. Given also the inability to 
implement the law of error propagation, the only realistic solution would be the exploitation 
of appropriate sensitivity studies, aiming at the quantification of the effect of potential 
measurement errors on the final result.  

This analysis is based on the investigation of the variation of the final result (annual energy 
gain Ql), as a function of the slight variations in the value of each measured parameter. For 
this reason, a slight variation dA is inserted in the experimental values of the parameter A, 
which have been recorded during the tests. Following, a new value /

lQ of the annual energy 
gain is calculated, as well as the difference of the new value to the initially calculated one, 

lll QQdQ −= / . The sensitivity factor for the specific parameter can be estimated by the 
relation: 

 

dA
dQ

A
Q ll ≈
∂
∂           (4.16) 

 

 
Table 4.3: Sensitivity coefficients 

Quantity  Mains-water 
temperature 

 

Store outlet 
temperature 

Ambient 
temperature 

Solar irradiance Draw-off flow 
rate 
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In order for the specific estimation to be reliable, the relevant investigation has been repeated 
for 4 different values of dA, evenly distributed around the experimentally measured value. 
Moreover, the investigation has been repeated for all parameters, the measured value of which 
influences the final result. Even though this approach can be implemented for any draw-off 
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profile, for the reasons explained in section (4.2.1) the presented results concern the case of a 
system subject to the draw off of three tank volumes by the end of each day. The results are 
presented in figures 4.8-4.12, for each one of the measured parameters. The respective 
sensitivity coefficients are presented in table 4.3. 

 

 

 

 

 

 

 

 

 
Fig. 4.8. Variation of annual energy gain with small changes in mains-water temperature  

 

 

 

 

 

 

 

 

 

 
Fig. 4.9. Variation of annual energy gain with small changes in store outlet temperature  

 

 

 

 

 

 

 

 

 
Fig. 4.10. Variation of annual energy gain with small changes in ambient temperature  
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Fig. 4.11. Variation of annual energy gain with small changes in incident solar radiation  

 

 

 

 

 

 

 

 

 

 
Fig. 4.12. Variation of annual energy gain with small changes in volumetric draw-off rate  

 

The uncertainty component related to the errors of the sensors can therefore be estimated by 
the relation: 
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The metrological quality of the measurement devices which have been used, being compatible 
with the requirements of the respective standard, can be formulated on terms of standard 
uncertainty as follows: 

 For the inlet and outlet temperature of the fluid (Tcw and Ts): ==
scw TT uu 0.1 K. 

 For the ambient temperature: =
aTu 0.29 Κ. 

 For the flow rate of the thermal medium: =Vsu 3.5 lt/h. 



 For the incident solar radiation (by using a first class pyranometer): =Gu 25 Wm-2. 

As in the case of the CSTG method, if the metrological requirements are formulated on 
accuracy terms, the calculation of standard uncertainty Au  of a quantity A is based on the 
consideration of an orthogonal probability distribution; the uncertainty is correlated to the 
respective accuracy Aa  through equation 4.15. 

From equation 4.17 and the values of sensitivity coefficients presented in table 4.3, an 
uncertainty value of  measQl

u , =19 kWh m-2 or, in terms of relative uncertainty, measQr l
u ,, =2.0%, 

can be concluded for the respective test.  

 

4.3.3. Imperfections of the energy model and related uncertainty 

As it has already been pointed out, the difficulty related to the calculation of uncertainty in the  
DST method concerns the exact energy model, as well as the algorithm for the primary data 
elaboration, not being accessible to the user. For this reason it is difficult to calculate 
analytically the component of uncertainty related to the imperfections of the energy model, 
which expresses the degree the model can explain the experimental data. 

An estimation though of this uncertainty component is provided by the software of the 
expected annual energy gain calculation itself (Long Term Performance Prediction module of 
the software). According to the documentation accompanying the software, the relevant 
calculations use the cross correlation matrix of the energy model coefficients which have been 
iteratively determined through the fitting procedure (Parameter Identification module of the 
software) (Spirkl, 1997). 

It is obvious that in order to consider the fitting typical error as a realistic assessment of the 
related to the imperfections of the energy model errors, the tests should have included a 
potentially wide and representative range of operation conditions for the system. 

For the examined case, a value for the relative uncertainty component mod,, lQru =1.1% has been 
calculated. 
 

4.3.4. Uncertainty component related to the variation of the meteorological conditions 

Similarly to the case of the CSTG method, the uncertainty component related to the variation 
of the meteorological conditions has been estimated according to the approach presented in 
4.2.3.5. The annual energy output for 20 consecutive years has been calculated, by using the 
meteorological data of the period from year 1989 to year 2008, for the geographical area of 
Athens (courtesy of the Institute of Environmental Research and Sustainable Development - 
National Observatory of Athens). The calculation has been implemented on the basis of the 
calculation method anticipated in Standard EN 12976-2 (DST method). 

Typical results for a draw-off volume Vd=3Vc are presented in Figure 4.13 in terms of 
deviation from the 20-years mean values, while the related uncertainty component, calculated 
according to Equation 4.16, is presented in Figure 4.14 for different draw-off volumes. The 
component of relative uncertainty is estimated to be in the order of meteoQr L

u ,, =3.7%, which is 
very close to the value calculated for the CSTG method. 
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Figure 4.13: Deviations of the annual energy output for 20 different meteorological years from the 20-

year mean value (DST method) 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.14: Relative uncertainty of the annual energy output for 20 different meteorological years 

with regard the hot water volume drawn-off (DST method) 
 

 

4.3.4. Total combined uncertainty 

The combined standard uncertainty associated with the values of the annual expected energy 
output is calculated through the combination of the individual components: 
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As in the case of the CSTG method, the calculated uncertainty, expressed as expanded 
uncertainty according to the usual metrological practice, is in the order of 8.6% for a 
confidence level of 95% and a coverage coefficient of k=2. 



Similarly to the case of the CSTG method, it can be concluded that the final uncertainty is 
mainly affected by the evident difficulty on the prediction of the meteorological conditions 
which might occur during the period the system would operate. In contrast to the CSTG 
method though, the metrological level of the used measuring instruments proves to 
significantly influence the final uncertainty budget, at least compared to the respective degree 
of influence of the weakness of the energy model to accurately explain the experimental data.  

 
5. Conclusions   
 

The scope of this work is the systematic discussion of the problems related to the estimation 
of uncertainty characterizing the results of solar thermal collectors and systems testing. 
Within this context, a complete methodological approach has been developed; the analysis has 
included specific examples referring to the implementation of the method in actual testing 
data.  

In the case of solar thermal collectors testing, the rather simple procedure for the testing and - 
mainly - for the elaboration of the results, has made possible the formulation of a 
straightforward proposal regarding the steps to be implemented and the required calculations. 
The proposed method allows not only the realistic assessment of the uncertainty 
characterizing the result, but also the suitability of the energy model used. 

In the case of solar systems, the involved calculations are more complex, thus the problem to 
be solved is more difficult. In the case of the CSTG method, the use of the Monte-Carlo 
simulation techniques allows the assessment of the effect of the measurement sensor errors, 
through the implementation of propagation of distributions concept. 

In the case of the DST method additional difficulties appear, related to the fact that the energy 
model as well as the algorithm for the elaboration of the experimental data are not known. For 
this reason, sensitivity analysis techniques have been used, allowing the approximate 
assessment of the effect of the experimental errors. 

Through the interpretation of the results presented in this study, one should bear in mind the 
following: 

 As pointed out through the analysis, there does not exist a unique path for the 
calculation of uncertainties. The proposed approaches should be treated as one 
amongst the potential alternatives, and should not be considered as the only solution. 
Every laboratory is responsible for the elaboration of its own approach, provided that 
this approach is compatible with the commonly accepted metrological practice.  

 The uncertainty characterizing a quantitative testing result depends on the specific 
conditions of the test performed, as well as on the characteristics of the device under 
test. From this point of view, the uncertainty figures presented concern only the tests 
which have been included as examples in this study. However, the experience gained 
by our Laboratory through the repeated implementation of the proposed 
methodologies in actual testing cases, shows that the presented uncertainty values can 
be considered representative for the type of products they refer to. A systematic 
investigation of the resulting uncertainties level by other laboratories, including a 
wider range of solar products, as well as the exchange of experience, could allow the 
formulation of a more realistic picture for the discussed topic. In such a case, it would 
be feasible to propose uncertainty figures representative of each test.  



 An interesting finding of the whole investigation is that the requirements of the 
standards, regarding the metrological quality of the equipment used, are in general 
satisfactory, as they do not seem to significantly burden the uncertainty budget. The 
uncertainties related with the quality of the energy model, and its ability to predict the 
behavior of the product throughout a wide range of operation conditions relevant to 
the ones the system would face in actual operation, prove to be more significant. 

Especially for solar thermal systems, it should be stressed that the expected annual energy 
gain is significantly influenced by the meteorological conditions valid during the actual 
operation of the system. The variability of these conditions seems to represent the most 
significant source of uncertainty, at least as regards the future user of the system. However, if 
it is clarified that the proposed value for the expected annual energy gain concerns the 
adopted Typical Meteorological Year, the respective uncertainty coefficient can be ignored. 
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