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Annex xx (Informative)
General guidelines for the assessment of uncertainty in solar collector efficiency testing

. Introduction
he aim of this annex is to provide a general guidance for the assessment of uncertainty in the result of
olar collector testing performed according to the present Standard. Testing laboratories are often invited
o provide a statement of uncertainty in test results in quantitative tests, in the framework of their
ccreditation or of application of product certification schemes. It is not the aim of this annex to define
hether and in which cases the calculation of uncertainty in test results is necessary.
his guidance concerns only in collector efficiency testing due to i) the great importance of the result of

his testing for the user, and ii) the peculiarities of the calculations, since the final result of efficiency
esting is not derived by a single measurement but by elaboration of a large number of primary
easurements.

t is noted that the proposed methodology is one of the possible approaches for the assessment of
ncertainty, and other approaches can be implemented. It is of the responsibility of each Laboratory to
hoose and to implement a scientifically valid approach for the determination of uncertainties, following
he recommendations of the accreditation bodies, where appropriate. For a more detailed review of the
ifferent aspects of determination of uncertainties in solar collector testing see also [1, 2, 3, 4].

. Measurement uncertainties in solar collector efficiency testing

he basic target of solar collector efficiency testing is the determination of the collector efficiency by
easurements under specific conditions. More specifically, it is assumed that the behavior of the

ollector can be described by a M-parameter single node, steady state or quasi-dynamic model:

=c1p1+c2p2+…+cMpM (1)

here:
 is the collector instantaneous efficiency.
1, p2,…,pΝ are quantities, the values of which are determined experimentally through testing
1, c2,…,cM are characteristic constants of the collector that are determined through testing.
n the case of the steady state model, for example, M=3, c1= η0, c2=U1, c3=U2, p1=1, p2=( Tm -Ta)/G and
3=( Tm -Ta)2/G.
uring the experimental phase, the output, solar energy and the basic climatic quantities are measured in

 steady-state or quasi-dynamic state points, depending the model used. From these primary
easurements the values of parameters η, p1, p2,…,pM are derived for each point of observation j, j=1…J.
enerally, the experimental procedure of the testing leads to a formation of a group of J observations
hich comprise, for each one of the J testing points, the values of ηj, p1,j, p2,j,…,pM,j.
or the determination of uncertainties, it is necessary to calculate the respective combined standard
ncertainties u(ηj), u(p1,j), …u(pM,j) in each observations point. It should be noted that in practice the



uncertainties u(ηj), u(p1,j), …u(pM,j) are almost never constant and the same for all points, but that each
testing point has its own standard deviation.
For the calculation of the standard deviation (squared standard uncertainty) in each point j, the following
general rules can be applied [5]:
I. Standard uncertainties in experimental data are determined by taking into account Type Α and Type Β

uncertainties. According to the recommendation of ISO GUM [5], the former are the uncertainties
determined by statistical means while the latter are determined by other means.

II. The uncertainty u(s) associated with a measurement s is the result of a combination of the Type Β
uncertainty uB(s), which is a characteristic feature of the calibration setup, and of the Type A
uncertainty uA(s), which represents fluctuation during sampling of data. If there is more than one
independent source of uncertainty (Type B or type A) uk, the final uncertainty is calculated according
to the general law of uncertainties combination:
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III.  Type Β uncertainty uB(s) derives from a combination of uncertainties over the whole measurement
chain, taking into account all available data, such as sensor uncertainty, data logger uncertainty,
uncertainty resulting from the possible differences between the measurand values perceived by the
measuring device. Relevant information has to be obtained from calibration certificates or other
technical data related to the devices used.

IV.  By nature, Type A uncertainties depend on the specific conditions of measurement and they account
for the fluctuations in the measured quantities during the measurement. Type A uncertainty uA(s)
derives from the statistical analysis of experimental data. In some cases (for example in the case of
the steady-state model), the best estimate of S is the arithmetic means s of the I repeated observations
si (i=1...I) and its Type A uncertainty is the standard deviations of the mean:
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In some other cases (for example in the case of the quasi-dynamic model where no arithmetic mean of
the repetitive measurements is used) uncertainty uA(s) can be equal to zero.

V.  The term combined standard uncertainty means the standard uncertainty in a result when that result
is obtained from the values of a number of other quantities. In most cases a measurand Y is
determined indirectly from P other directly measured quantities X1, X2, ...XP through a functional
relationship Y=f(X1, X2, ...XP). The standard uncertainty in the estimate y is given by the law of error
propagation:
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An example of such indirect determination in the case of solar collector efficiency testing is the
determination of instantaneous efficiency η, which derives from the values of global solar irradiance
in the collector level G, fluid mass flow rate m, temperate difference ∆T, collector area Α and specific
heat capacity cf: Thus, in this case the standard uncertainty u(ηj) in each value ηj of instantaneous
efficiency is calculated by the combination of standard uncertainties in the values of the primary
measured quantities, taking into account their relation to the derived quantity η.



3. Fitting and uncertainties in efficiency testing results

During analyzing the data a least square fitting of the model equation is performed, in order to the
determine the values of coefficients c1, c2,…,cM for which the model of equation (1) represents the series
of J observations with the greatest accuracy.
Since in reality, the typical deviation is almost never constant and the same for all observations, but that
each data point (ηj, p1,j, p2,j,…,pM,j) has its own standard deviation σj, an interesting solution is the use of
the weighted least square (WLS) method, which calculates, on the base of the measured values and their
uncertainties, not only the model parameters but also their uncertainty. In the case of WLS, the maximum
likelihood estimate of the model parameters is obtained by minimising the chi-square function:

( )∑
2

J
j 1 1,j 2 2,j N M,j2

2
j=1 j

-(c p +c p +...c p )
χ =

u
η

(5)

where 2
ju is the variance of the difference j 1 1,j 2 2,j N M,jη -(c p +c p +...c p ) :

2
ju = ( )j 1 1,j 2 2,j N M,jVar -(c p +c p +...c p )η = ( ) ( ) ( )2 2 22 2

1 1,j M M,j( ) +c u(p ) +...+c u(p )ju η (6)

Finding coefficients c1, c2,…,cM and their standard uncertainties by minimizing chi-square function is
complicated, because of the non-linearity present in equation (5). A strategy is therefore to find these
uncertainties numerically. Α method for the case of a M-parameter model is presented below [6].
Let K be a matrix whose JxM components kj,m are constructed from M basic functions evaluated at the J
experimental values of p1, …,pM weighted by the uncertainty uj :
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Let also L be a vector of length J whose components lj are constructed from values of ηj to be fitted,
weighted by the uncertainty uj:
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The normal equation of the least square problem can be written:

(KT • K) • INV(C) = KT  • L                              (9)

where C is a vector whose elements are the fitted coefficients.

Given the fact that for the calculation of variances 2
ju  the knowledge of coefficients c1, c2,…,cM is

needed, a possible solution is to use the values of coefficients calculated by standard least squares fitting
as the initial values. These initial values can be used in equation (6) for the calculation of 2

ju , J=1…J
and the formation of matrix K and of vector L.
The solution of equation (9) gives the new values of coefficients c1, c2,…,cM, which however are not
expected to differ noticeably from those calculated by standard least squares fitting and used as initial
values for the calculation of 2

ju .

Moreover, Z=INV(KT•K) is a matrix whose diagonal elements zk,k are the squared uncertainties
(variances) and the off-diagonal elements zk,l= zl,k, k≠l are the covariance between fitted coefficients:

,( )m m mu c z= , m=1,…,M (10)

Cov(ck,cl)= zk,l= zl,k, k=1,…,M and l=1,…,M and k≠l (11)

It should be noted that the knowledge of covariance between the fitted coefficients is necessary if one
wishes to calculate, in a next stage, the uncertainty u(η) in the predicted values of η using equations (1)
and (4).
Equation (9) can be solved by a standard numerical method, for example, by Gauss-Jordan elimination. It
is also possible to use matrix manipulation functions of commonly used spreadsheet software.   
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