





Communication écrite multilingue • Multilingual written communication Comunicazione scritta plurilingue • Mehrsprachige schriftliche Kommunikation

## CEN/TC312's Liaison to CEN/TC164 Short Update as of October 8<sup>th</sup>, 2018

### Dr. Jean-Marc Suter physicist SIA, Suter Consulting, Berne suter@suterconsulting.com

## Content

- General information about CEN/TC164 activities (as requested by the SCF Steering Committee)
- Status of the revision of EN 806
- Facts and figures on drinking water hygiene in buildings

- CEN/TC164 "Water supply" (cold and hot water systems in buildings, from the entry into the premises)
- CEN/TC164/WG2 "Internal systems and components" Latest meeting: September 27<sup>th</sup>, 2017 in Cologne Next meeting: October 31<sup>st</sup>, 2018 in Jona, Switzerland
- CEN/TC164/WG2/AHG "Ad-Hoc-Group" The steering group of WG2 Most recent meetings: February 15-16<sup>th</sup>, 2018 in Cologne and July 17-18<sup>th</sup>, 2018 in Vienna Next meeting: October 30<sup>th</sup>, 2018 in Jona, Switzerland I am a full member of AHG.

### ACTIVE WORKING GROUPS

| Working group          | Title                                                                               | Convenor                          |                                      |
|------------------------|-------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|
| CEN/TC 164/WG 1        | External systems and components                                                     | Nick Preston (UK)                 | relevant                             |
| CEN/TC 164/WG 2        | Internal systems and components                                                     | Volker Meyer (GE) 🗲               | for solar                            |
| CEN/TC 164/WG 3        | Effects of materials in contact with<br>drinking water                              | Hilde Prummel (NL)                | thermal                              |
| CEN/TC 164/WG 5        | Concrete pipes                                                                      | François Leblanc (FR)             |                                      |
| CEN/TC 164/WG 8        | Sanitary tapware                                                                    | Werner Heinzelmann (0             | GE)                                  |
| <u>CEN/TC 164/WG 9</u> | Drinking water treatment                                                            | Bernard Leroy (FR)                | relevant for solar                   |
| CEN/TC 164/WG 10       | Hot water and cold water storage<br>within dwellings                                | Martyn Griffiths (UK <del>)</del> | thermal, but co-<br>operation denied |
| CEN/TC 164/WG 12       | Flexible hoses assemblies                                                           | Jörg Rudolph (GE)                 | by convenor                          |
| CEN/TC 164/WG 13       | Water conditioning equipment inside<br>buildings                                    | Joseph Klinger (GE)               | ,                                    |
| CEN/TC 164/WG 14       | Valves and fitting for buildings and<br>devices to prevent pollution by<br>backflow | Tino Reinhard (GE)                |                                      |
| CEN/TC 164/WG 15       | Security of drinking water supply                                                   | Thomas Zenz (GE)                  |                                      |
| Référence document     |                                                                                     |                                   | Page 4                               |

### ACTIVE WORKING GROUPS

| Working group<br>CEN/TC 164/WG 1 | Title<br>External systems and components               |
|----------------------------------|--------------------------------------------------------|
| <u>CEN/TC 164/WG 2</u>           | Internal systems and components                        |
| CEN/TC 164/WG 3                  | Effects of materials in contact with<br>drinking water |
| CEN/TC 164/WG 5                  | Concrete pipes                                         |
| CEN/TC 164/WG 8                  | Sanitary tapware                                       |
| CEN/TC 164/WG 9                  | Drinking water treatment                               |
| CEN/TC 164/WG 10                 | Hot water and cold water storage<br>within dwellings   |
| CEN/TC 164/WG 12                 | Flexible hoses assemblies                              |
| CEN/TC 164/WG 13                 | Water conditioning equipment inside buildings          |
|                                  | Valves and fitting for buildings and                   |
| CEN/TC 164/WG 14                 | devices to prevent pollution by                        |
|                                  | backflow                                               |
| <u>CEN/TC 164/WG 15</u>          | Security of drinking water supply                      |
| Référence document               |                                                        |

| F VVI | syst.<br>review            | publ.<br>2016/<br>17 |
|-------|----------------------------|----------------------|
| 1     | 1                          |                      |
| 5     |                            |                      |
| 1     | 9                          |                      |
|       |                            |                      |
| 1     |                            | 3                    |
| 7     | 7                          | 4                    |
|       |                            |                      |
|       |                            |                      |
|       |                            |                      |
| 6     | 1                          | 1                    |
|       |                            |                      |
|       | 1<br>5<br>1<br>1<br>7<br>6 | 1  1    1  1    5    |

Page 4

Liaison and partners organizations: AQUA Europa, AQUA, ECOS, EHI, ESA, EuSalt, EWTA, EuLA, MASM, CEIR (taps and valves), TEPPFA

#### Committees in liaison with CEN /TC 164:

- Official
- CEN/TC 57 "Central heating boilers"
- CEN/TC 69 "Industrial valves"
- CEN/TC 133 "Copper and copper alloys"
- CEN/TC 197 "Pumps"
  - Non-registered in Projex
- CEN/TC 155 "Plastics piping systems and ducting systems"
- CEN/TC 165 "Waste water engineering"
- CEN/TC 203 "Cast iron pipes, fittings and their joints"
- CEN/TC 402 "Domestic Pools and Spas"
- CEN/TC 426 "Project Committee Domestic appliances used for water treatment not connected to water supply"
- CEN/TC 312 "Thermal solar systems and components"
- ISO/TC 224 "Water services"

## Revision of EN 806 "Technical Rules Drinking Water Installations"

- First standard considered for revision: EN 806-2 -- <u>Design</u> of drinking water installations in buildings
- Status:
  - Feb. 2018: New table of content updated at AHG meeting
  - Feb. 2018: Austrian and Swiss inputs for EN 806-2 entered into master document at AHG meeting
  - March-June 2018: German inputs for EN 806-2 prepared by the DIN mirror committee under consideration of Austrian and Swiss inputs; update of master document by Germany
  - July 2018: 33% of master document discussed at AHG meeting
- Content:
  - Hygiene, energy, pipework, acoustics, materials, valves, pressure, pumps...
  - Emphasis put on the drinking water distribution system (cold and hot)
  - So far, no solar thermal specific feature included

# Facts and figures on drinking water hygiene in buildings

- Much more legionellosis cases in the summer months than in the winter time
- Much more contaminations by humid cooling towers than by drinking water systems
- Several measuring campaigns on drinking water installations performed in multi-family houses, in particular in Germany
- Literature study performed by Dr. Mchel Haller, SPF Research, Rapperswil, about such measuring campaigns
- Main conclusion: the drinking water distribution network (cold and hot water) is the main source of contamination by Legionella, not the store!

# Facts and figures on drinking water hygiene in buildings

- Prof. Th. Kistemann, Universitätsklinikum Bonn
  - about 25% of 73 multi-family buildings have a (very light to severe) contamination
  - Large installations more frequently contaminated than small ones
  - Circulation line installed  $\rightarrow$  higher risk of contamination
  - Distribution lines more frequently contaminated than stores; probably: contamination of stores by return flow of circulation lines
  - Cold water temperature measured at taps: 16 °C to 58 °C (!!)
  - Hot water temperature measured at taps: 19 °C (!!) to 72 °C
  - Maintenance is a very important parameter; documentation must be very clear; operators of the installations must be well instructed
  - Temperature at store outlet is only one important factor for the contamination risk by Legionella; no absolute threshold value valid for all installations, that would separate low risk/high risk of contamination; higher risk under 50 °C; lower risk above 60 °C

# Facts and figures on drinking water hygiene in buildings

Hygiene rules that are already clear:

- No <u>unused</u> drinking water distribution line nor tap (no stagnation of cold and hot water in the whole system)
- Drinking water distribution lines have to be distributed into three categories at design time:
  - Cold water lines (temperature < 25 °C)</li>
  - (Insulated) lines maintained at a high temperature (Switzerland: >52 °C)
  - (Uninsulated) hot water draw-off lines that cool down at room temperature after drawoffs
- <u>Heat traps</u> to separate draw-off lines from the store or, if relevant, from the lines maintained at a high temperature
- Cold water lines <u>not to be installed parallel</u> to hot water lines or space heating distribution lines
- Design rule (Switzerland): hot water has to be able to reach at least 50 °C at each tap after a certain delay (CEN/TR 16355: 60 °C after 30 s)
- Circulation lines (Switzerland): at least 52 °C in all branches (CEN/TR 16355: 55 °C); hydraulic equilibrium needed to be certain that temperature > 52 °C everywhere

## My personal conclusions (1)

- Requirements on preheated drinking water in stores (solar thermal and heat recovery systems) are not yet clear.
- If solar collector area is large enough to heat up hot water to at least 55 °C from February to October, there is only a small contamination risk of the solar heated store, provided there is no circulation line installed (i.e. no store contamination by the drinking water distribution system).
- Designers of heat pump systems may have more problems with Legionella proliferation, although they are not participating to the revision of EN 806 (CEN/TC164 rejected my request to appeal other TC to participate to this revision).

## My personal conclusions (2)

- Final requirements for solar heated stores may possibly be less severe than suggested in the ESTIF study and Code of practice of 2013.
- I postponed the discussions in the Strategic Working Group of CEN/TC312 until the position of Switzerland is clear (current revision of SIA 385/1 needs more time, in order to get agreement with Swiss industry of solar thermal systems and heat pumps).
- So far, only Costas Travasaros announced his participation to the Strategic Working Group. Other experts are very welcome! Please contact me!

### Thank you for your attention!